
Object Detection for Graphical User Interface: Old Fashioned or
Deep Learning or a Combination?

Jieshan Chen
Jieshan.Chen@anu.edu.au

Australian National University
Australia

Mulong Xie
u6462764@anu.edu.au

Australian National University
Australia

Zhenchang Xing∗
Zhenchang.Xing@anu.edu.au
Australian National University

Australia

Chunyang Chen†
Chunyang.Chen@monash.edu

Monash University
Australia

Xiwei Xu
Xiwei.Xu@data61.csiro.au

Data61, CSIRO
Australia

Liming Zhu‡
Liming.Zhu@data61.csiro.au

Data61, CSIRO
Australia

Guoqiang Li
Li.G@sjtu.edu.cn

Shanghai Jiao Tong University
China

ABSTRACT
Detecting Graphical User Interface (GUI) elements in GUI images is
a domain-specific object detection task. It supports many software
engineering tasks, such as GUI animation and testing, GUI search
and code generation. Existing studies for GUI element detection
directly borrow the mature methods from computer vision (CV)
domain, including old fashioned ones that rely on traditional image
processing features (e.g., canny edge, contours), and deep learning
models that learn to detect from large-scale GUI data. Unfortunately,
these CV methods are not originally designed with the awareness
of the unique characteristics of GUIs and GUI elements and the high
localization accuracy of the GUI element detection task. We conduct
the first large-scale empirical study of seven representative GUI
element detection methods on over 50k GUI images to understand
the capabilities, limitations and effective designs of these methods.
This study not only sheds the light on the technical challenges
to be addressed but also informs the design of new GUI element
detection methods. We accordingly design a new GUI-specific old-
fashioned method for non-text GUI element detection which adopts
a novel top-down coarse-to-fine strategy, and incorporate it with the
mature deep learning model for GUI text detection. Our evaluation
on 25,000 GUI images shows that our method significantly advances
the start-of-the-art performance in GUI element detection.

∗Also with Data61, CSIRO.
†Corresponding author.
‡Also with University of New South Wales.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00
https://doi.org/10.1145/3368089.3409691

CCS CONCEPTS
• Software and its engineering→ Software development tech-
niques; • Human-centered computing → Graphical user in-
terfaces.

KEYWORDS
Object Detection, User Interface, Deep Learning, Computer Vision
ACM Reference Format:
Jieshan Chen, Mulong Xie, Zhenchang Xing, Chunyang Chen, Xiwei Xu,
Liming Zhu, and Guoqiang Li. 2020. Object Detection for Graphical User
Interface: Old Fashioned or Deep Learning or a Combination?. In Proceed-
ings of the 28th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE ’20), No-
vember 8–13, 2020, Virtual Event, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3368089.3409691

1 INTRODUCTION
GUI allows users to interact with software applications through
graphical elements such as widgets, images and text. Recognizing
GUI elements in a GUI is the foundation of many software engineer-
ing tasks, such as GUI automation and testing [4, 35, 48, 51], support-
ing advanced GUI interactions [1, 16], GUI search [15, 39], and code
generation [10, 31, 33]. Recognizing GUI elements can be achieved
by instrumentation-based or pixel-based methods. Instrumentation-
based methods [3, 27, 34] are intrusive and requires the support of
accessibility APIs [6, 23] or runtime infrastructures [22, 30] that
expose information about GUI elements within a GUI. In contrast,
pixel-based methods directly analyze the image of a GUI, and thus
are non-intrusive and generic. Due to the cross-platform character-
istics of pixel-based methods, they can be widely used for novel ap-
plications such as robotic testing of touch-screen applications [35],
linting of GUI visual effects [53] in both Android and IOS.

Pixel-based recognition of GUI elements in a GUI image can be
regarded as a domain-specific object detection task. Object detection
is a computer-vision technology that detects instances of semantic
objects of a certain class (such as human, building, or car) in digital
images and videos. It involves two sub-tasks: region detection or

https://doi.org/10.1145/3368089.3409691
https://doi.org/10.1145/3368089.3409691

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA J. Chen, M. Xie, Z. Xing, C. Chen, X. Xu, L. Zhu, and G. Li

proposal - locate the bounding box (bbox for short) (i.e., the smallest
rectangle region) that contains an object, and region classification
- determine the class of the object in the bounding box. Existing
object-detection techniques adopt a bottom-up strategy: starts with
primitive shapes and regions (e.g., edges or contours) and aggregate
them progressively into objects. Old-fashioned techniques [31, 33,
45] relies on image features and aggregation heuristics generated by
expert knowledge, while deep learning techniques [17, 38, 40] use
neural networks to learn to extract features and their aggregation
rules from large image data.

GUI elements can be broadly divided into text elements and
non-text elements (see Figure 1 for the examples of Android GUI
elements). Both old-fashioned techniques and deep learning models
have been applied for GUI element detection [9, 31, 33, 48, 52]. As
detailed in Section 2.1, considering the image characteristics of GUIs
and GUI elements, the high accuracy requirement of GUI-element
region detection, and the design rationale of existing object detec-
tion methods, we raise a set of research questions regarding the
effectiveness features and models originally designed for generic
object detection on GUI elements, the region detection accuracy
of statistical machine learning models, the impact of model ar-
chitectures, hyperparameter settings and training data, and the
appropriate ways of detecting text and non-text elements.

These research questions have not been systematically studied.
First, existing studies [31, 33, 48] evaluate the accuracy of GUI ele-
ment detection by only a very small number (dozens to hundreds)
of GUIs. The only large-scale evaluation is GUI component design
gallery [9], but it tests only the default anchor-box setting (i.e. a
predefined set of bboxes) of Faster RCNN [40] (a two-stage model).
Second, none of existing studies have investigated the impact of
training data size and anchor-box setting on the performance of
deep learning object detectionmodels. Furthermore, the latest devel-
opment of anchor-free object detection has never been attempted.
Third, no studies have compared the performance of different meth-
ods, for example old fashioned versus deep learning, or different
styles of deep learning (e.g., two stage versus one stage, anchor box
or free). Fourth, GUI text is simply treated by Optical Character
Recognition (OCR) techniques, despite the significant difference
between GUI text and document text that OCR is designed for.

To answer the raised research questions, we conduct the first
large-scale, comprehensive empirical study of GUI element detec-
tion methods, involving a dataset of 50,524 GUI screenshots ex-
tracted from 8,018 Android mobile applications (see Section 3.2.1),
and two representative old-fashioned methods (REMAUI [33] and
Xianyu [52]) and three deep learning models (Faster RCNN [40],
YOLOv3 [38] and CenterNet [17]) that cover all major method styles
(see Section 3.2.2). Old-fashioned detection methods perform poorly
(REMAUI F1=0.201 and Xianyu F1=0.154 at IoU>0.9) for non-text
GUI element detection. IoU is the intersection area over union area
of the detected bounding box and the ground-truth box. Deep learn-
ing methods perform much better than old-fashioned methods, and
the two-stage anchor-box based Faster RCNN performs the best
(F1=0.438 at IoU>0.9), and demands less training data. However,
even Faster RCNN cannot achieve a good balance of the coverage
of the GUI elements and the accuracy of the detected bounding
boxes.

Button Spinner Chronometer

Checkbox ImageButton

RatingBar

SeekBarEditText

RadioButton

ImageView ProgressBar

SwitchToggleButton

TextView

VideoView

Figure 1: Characteristics of GUI elements: large in-class vari-
ance and high cross-class similarity

It is surprising that anchor-box based models are robust to the
anchor-box settings, and merging the detection results by different
anchor-box settings can improve the final performance. Our study
shows that detecting text and non-text GUI elements by a single
model performs much worse than by a dedicated text and non-
text model respectively. GUI text should be treated as scene text
rather than document text, and the state-of-the-art deep learning
scene text model EAST [55] (pretrained without fine tuning) can
accurately detect GUI text.

Inspired by these findings, we design a novel approach for GUI
element detection. For non-text GUI element detection, we adopt
the simple two-stage architecture: perform region detection and
region classification in a pipeline. For non-text region detection,
we prefer the simplicity and the bounding-box accuracy of old-
fashioned methods. By taking into account the unique boundary,
shape, texture and layout characteristics of GUI elements, we de-
sign a novel old-fashioned method with a top-down coarse-to-fine
detection strategy, rather than the current bottom-up edge/contour
aggregation strategy in existing methods [33, 52]. For non-text
region classification and GUI text detection, we adopt the ma-
ture, easy-to-deploy ResNet50 image classifier [24] and the EAST
scene text detector [55], respectively. By a synergy of our novel
old-fashioned methods and existing mature deep learning models,
our new method achieves 0.573 in F1 for all GUI elements, 0.523
in F1 for non-text GUI elements, and 0.516 in F1 for text elements
in a large-scale evaluation with 25,000 GUI images, which signifi-
cantly outperform existing old-fashioned methods, and outperform
the best deep learning model by 19.4% increase in F1 for non-text
elements and 47.7% increase in F1 for all GUI elements.

This paper makes the following contributions:
• We perform the first systematic analysis of the problem scope
and solution space of GUI element detection, and identify the key
challenges to be addressed, the limitations of existing solutions,
and a set of unanswered research questions.

• We conduct the first large-scale empirical study of seven repre-
sentative GUI element detection methods, which systematically
answers the unanswered questions.We identify the pros and cons
of existing methods which informs the design of new methods
for GUI element detection.

• We develop a novel approach that effectively incorporates the
advantages of different methods and achieves the state-of-the-art
performance in GUI element detection.

Object Detection for Graphical User Interface: Old Fashioned or Deep Learning or a Combination? ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 1: Existing solutions for non-text GUI element detection and their limitations

Style Method Region Detection Region Classification

Old
Fashioned

Edge/contour
aggregation [31,
33, 52]

• Detect primitive edges and/or regions, and merge them
into larger regions (windows or objects)
•Merge with text regions recognized by OCR
• Ineffective for artificial GUI elements (e.g., images)

Heuristically distinguish image, text,
list, container [33, 52]. Can be
enhanced by a CNN classification like
in [31]

Template
matching [2, 16,
35, 51]

• Depend on manual feature engineering (either sample images or abstract prototypes)
• Match samples/prototypes to detect object bounding box and class at the same time
• Only applicable to simple and standard GUI elements (e.g., button, checkbox)
• Hard to apply to GUI elements with large variance of visual features

Deep
Learning

Anchor-box, two
stage [9, 40]

•Must define anchor boxes
• Pipeline region detection and region classification
• Gallery D.C. [9] is the only work that tests the Faster
RCNN on large-scale real GUIs, but it uses default settings

A CNN classifier for region
classification, trained jointly with
region proposal network

Anchor-box, one
stage [38, 48] • YOLOv2 [37] and YOLOv3 [38] uses k-means to determine anchor boxes (k is user-defined)

• Simultaneously region detection and region classification
• [48] uses YOLOv2; trains and tests on artificial desktop GUIs; only tests on 250 real GUIs

Anchor free [17] Never applied

2 PROBLEM SCOPE AND SOLUTION SPACE
In this section, we identify the unique characteristics of GUIs and
GUI elements, which have been largely overlooked when designing
or choosing GUI element detection methods (Section 2.1). We also
summarize representative methods for GUI element detection and
point out the challenges that the unique characteristics of GUIs and
GUI elements pose to these methods (Section 2.2).

2.1 Problem Scope
Figure 1 and Figure 6 shows examples of GUI elements and GUIs
in our dataset. We observe two element-level characteristics: large
in-class variance and high cross-class similarity, and two GUI-level
characteristics: packed scene and close-by elements, and mix of
heterogeneous objects. In face of these characteristics, GUI element
detection must achieve high accuracy on region detection.

Large in-class variance: GUI elements are artificially designed,
and their properties (e.g., height, width, aspect ratio and textures)
depend on the content to display, the interaction to support and the
overall GUI designs. For example, the width of Button or EditText
depends on the length of displayed texts. ProgressBar may have dif-
ferent styles (vertical, horizontal or circle). ImageView can display
images with any objects or contents. Furthermore, different design-
ers may use different texts, colors, backgrounds and look-and-feel,
even for the same GUI functionality. In contrast, physical-world
objects, such as human, car or building, share many shape, appear-
ance and physical constraints in common within one class. Large
in-class variance of GUI elements pose main challenge of accurate
region detection of GUI elements.

High cross-class similarity: GUI elements of different classes
often have similar size, shape and visual features. For example, But-
ton, Spinner and Chronometer all have rectangle shape with some
text in the middle. Both SeekBar and horizontal ProgressBar show
a bar with two different portions. The visual differences to distin-
guish different classes of GUI elements can be subtle. For example,
the difference between Button and Spinner lies in a small triangle

at the right side of Spinner, while a thin underline distinguishes
EditText from TextView. Small widgets are differentiated by small
visual cues. Existing object detection tasks usually deal with physi-
cal objects with distinct features across classes, for example, horses,
trucks, persons and birds in the popular COCO2015 dataset [28].
High cross-class similarity affects not only region classification
but also region detection by deep learning models, as these two
subtasks are jointly trained.

Mix of heterogeneous objects: GUIs display widgets, images
and texts. Widgets are artificially rendered objects. As discussed
above, they have large in-class variance and high cross-class simi-
larity. ImageView has simple rectangle shape but can display any
contents and objects. For the GUI element detection task, we want
to detect the ImageViews themselves, but not any objects in the
images. However, the use of visual features designed for physical
objects (e.g., canny edge [7], contour map [44]) contradicts this
goal. In Figure 6 and Figure 4, we can observe a key difference
between GUI texts and general document texts. That is, GUI texts
are often highly cluttered with the background and close to other
GUI elements, which pose main challenge of accurate text detection.
These heterogeneous properties of GUI elements must be taken
into account when designing GUI element detection methods.

Packed scene and close-by elements: As seen in Figure 6,
GUIs, especially those of mobile applications, are often packed with
many GUI elements, covering almost all the screen space. In our
dataset (see Section 3.2.1), 77% of GUIs contain more than seven GUI
elements. Furthermore, GUI elements are often placed close side by
side and separated by only small padding in between. In contrast,
there are only an average of seven objects placed sparsely in an
image in the popular COCO(2015) object detection challenge [28].
GUI images can be regarded as packed scenes. Detecting objects in
packed scenes is still a challenging task, because close-by objects
interfere the accurate detection of each object’s bounding box.

High accuracy of region detection For generic object detec-
tion, a typical correct detection is defined loosely, e.g., by an IoU>

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA J. Chen, M. Xie, Z. Xing, C. Chen, X. Xu, L. Zhu, and G. Li

0.5 between the detected bounding box and its ground truth (e.g.,
the PASCAL VOC Challenge standard [19]), since people can recog-
nize an object easily from major part of it. In contrast, GUI element
detection has a much stricter requirement on the accuracy of region
detection. Inaccurate region detection may not only result in inaccu-
rate region classification, but more importantly it also significantly
affects the downstream applications, for example, resulting in incor-
rect layout of generated GUI code, or clicking on the background
in vain during GUI testing. However, the above GUI characteristics
make the accurate region detection a challenging task. Note that
accurate region classification is also important, but the difficulty
level of region classification relies largely on the downstream ap-
plications. It can be as simple as predicting if a region is tapable or
editable for GUI testing, or if a region is a widget, image or text in
order to wireframe a GUI, or which of dozens of GUI framework
component(s) can be used to implement the region.

2.2 Solution Space
We summarize representative methods for GUI element detection,
and raise questions that have not been systematically answered.

2.2.1 Non-Text Element Detection. Table 1 summarizes existing
methods for non-text GUI element detection. By contrasting these
methods and the GUI characteristics in Section 2.1, we raise a series
questions for designing effective GUI element detection methods.
We focus our discussion on region detection, which aims to distin-
guish GUI element regions from the background. Region classifica-
tion can be well supported by a CNN-based image classifier [31].

The effectiveness of physical-world visual features. Old-
fashioned methods for non-text GUI element detection rely on
either edge/contour aggregation [31, 33, 52] or template match-
ing [2, 16, 35, 51]. Canny edge [7] and contour map [44] are primi-
tive visual features of physical-world objects, which are designed
to capture fine-grained texture details of objects. However, they
do not intuitively correspond to the shape and composition of
GUI elements. It is error-prone to aggregate these fine-grained
regions into GUI elements, especially when GUIs contain images
with physical-world objects. Template matching methods improve
over edge/contour aggregation by guiding the region detection and
aggregation with high-quality sample images or abstract proto-
types of GUI elements. But this improvement comes with the high
cost of manual feature engineering. As such, it is only applicable
to simple and standard GUI widgets (e.g., button and checkbox of
desktop applications). It is hard to apply template-matching method
to GUI elements of mobile applications which have large variance
of visual features. Deep learning models [9, 17, 38, 40, 48] remove
the need of manual feature engineering by learning GUI element
features and their composition from large numbers of GUIs. How
effective can deep learning models learn GUI element features and
their composition in face of the unique characteristics of GUIs and
GUI elements?

The accuracy of bounding box regression. Deep learning
based object detection learns a statistical regressionmodel to predict
the bounding box of an object. This regression model makes the
prediction in the feature map of a high layer of the CNN, where
one pixel stands for a pixel block in the original image. Can such
statistical regression satisfy the high-accuracy requirement of region

detection, in face of large in-class variance of GUI element and packed
or close-by GUI elements?

The impact of model architectures, hyperparameters and
training data. Faster RCNN [40] and YOLOv2 [38]) have been
applied to GUI element detection. These two models rely on a set
of pre-defined anchor boxes. The number of anchor boxes and their
height, width and aspect ratio are all the model hyperparameters,
which are either determined heuristically [40] or by clustering the
training images using k-means and then using the metrics of the
centroid images [38] Considering large in-class variance of GUI
elements, how sensitive are these anchor-box based models to the
definition of anchor boxes, when they are applied to GUI element
detection? Furthermore, the recently proposed anchor-free model
(e.g., CenterNet [17]) removes the need of pre-defined anchor-boxes,
but has never been applied to GUI element detection. Can anchor-
free model better deal with large in-class variance of GUI elements?
Last but not least, the performance of deep learning models heavily
depends on sufficient training data. How well these models perform
with different amount of training data?

2.2.2 Text Element Detection. Existing methods either do not de-
tect GUI texts or detect GUI texts separately from non-text GUI
element detection. They simply use off-the-shelf OCR tools (e.g.,
Tesseract [42]) for GUI text detection. OCR tools are designed for
recognizing texts in document images, but GUI texts are very dif-
ferent from document texts. Is OCR really appropriate for detecting
GUI texts? Considering the cluttered background of GUI texts, would
it better to consider GUI text as scene text? Can the deep learning
scene text model effectively detect GUI texts? Finally, considering the
heterogeneity of GUI widgets, images and texts, can a single model
effectively detect text and non-text elements?

3 EMPIRICAL STUDY
To answer the above unanswered questions, we conduct the first
large-scale empirical study of using both old-fashioned and deep
learning methods for GUI element detection. Our study is done
on a dataset of 50,524 GUI screenshots from the Rico dataset [15],
which were extracted from 8,018 Android mobile applications from
27 application categories. Our study involves a systematic compar-
ison of two old-fashioned methods, including the representative
method REMAUI [33] in the literature and the method Xianyu [52]
recently developed by the industry, and three popular deep learning
methods that cover all major model design styles, including two
anchor-box based methods - Faster RCNN [40] (two stage style)
and YOLO V3 [38] (one stage style) and one one-stage anchor-free
model CenterNet [17]. For GUI text detection, we compare OCR
tool Tesseract [42] and scene text detector EAST [55], and compare
separate and unified detection of text and non-text GUI elements.

3.1 Research Questions
As region classification can be well supported by a CNN-based
image classifier [31], the study focuses on three research questions
(RQs) on region detection in GUI element detection task:

• RQ1 Performance: How effective can different methods detect
the region of non-text GUI elements, in terms of the accuracy of
predicted bounding boxes and the coverage of GUI elements?

Object Detection for Graphical User Interface: Old Fashioned or Deep Learning or a Combination? ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

• RQ2 Sensitivity: How sensitive are deep learning techniques to
anchor-box settings and amount of training data?

• RQ3 Text detection: Does scene text recognition fit better for
GUI text detection than OCR technique?Which option, separated
versus unified text and non-text detection, is more appropriate?

3.2 Experiment Setup
3.2.1 Dataset. We leverage Rico dataset [15] to construct our ex-
perimental dataset. In this study, we consider 15 types of commonly
used GUI elements in the Android Platform (see examples in Fig-
ure 1). The Rico dataset contains 66,261 GUIs, and we filter out
15,737 GUIs. Among them, 5,327 GUIs do not belong to the app
itself, they are captured outside the app, such as Android home
screen, a redirection to the social media login page (e.g. Facebook)
or to a browser. We identify them by checking whether the package
name in the metadata for each GUI is different from the app’s true
package name. 2,066 GUIs do not have useful metadata, which only
contain elements that describe the layout, or elements with invalid
bounds, or do not have visible leaf elements. 709 of them do not
contain any of the 15 elements. The rest 7,635 GUIs are removed
because they only contain text elements or non-text elements. As a
result, we obtain 50,524 GUI screenshots. These GUIs are from 8,018
Android mobile applications of 27 categories. These GUIs contain
923,404 GUI elements, among which 426,404 are non-text elements
and 497,000 are text elements. We remove the standard OS status
and navigation bars from all GUI screenshots as they are not part of
application GUIs. We obtain the bounding-box and class of the GUI
elements from the corresponding GUI metadata. Figure 2 shows
the distribution of GUIs per application and the number of GUI
elements per GUI. Compared with the number of objects per image
in COCO2015, our GUI images are much more packed. We split
these 50,524 GUIs into train/validation/test dataset with a ratio of
8:1:1 (40K:5K:5k). All GUIs of an application will be in only one split
to avoid the bias of “seen samples” across training, validation and
testing. We perform 5-fold cross-validation in all the experiments.

3.2.2 Baselines. The baseline methods used in this study include:
REMAUI [33] detects text and non-text elements separately.

For text elements, it uses the OCR tool Tesseract [42]. For non-
text elements, it detects the structural edge of GUI elements using
Canny edge detection [7]. REMAUI then performs edge merging,
obtains the contours and the bounding box of the GUI elements
by merging partial overlapping regions. We use REMAUI tool [43]
provided by its authors in our experiments.

Xianyu [52] is a tool developed by the Alibaba to generate code
from GUI images. We only use the element detection part of this
tool. Xianyu binarizes the image and performs horizontal/vertical
slicing, i.e., cutting the whole images horizontally/vertically in half,
recursively to obtain the GUI elements. It uses Laplacian Edge
Detection to detect edges and contours in the binarized image and
applies flood fill algorithm [47] to identify the connected regions
and remove noises from complex background.

Faster RCNN [40] is a two-stage anchor-box-based deep learn-
ing technique for object detection. It first generates a set of region
proposals by a region proposal network (RPN), also called as region
of interests (RoIs), which likely contain objects. RPN uses a fixed set
of user-defined boxes with different scales and aspect ratios (called

Figure 2: GUI elements distribution in our dataset

anchor boxes) and computes these anchor boxes in each point in the
feature map. For each box, RPN then computes an objectness score
to determine whether it contains an object or not, and regresses it
to fit the actual bounding box of the contained object. The second
stage is a CNN-based image classifier that determines the object
class in the RoIs.

YOLOv3 [38] is an one-stage anchor-box-based object detec-
tion technique. Different from the manually-defined anchor box of
Faster-RCNN, YOLOv3 uses 𝑘-means method to cluster the ground
truth bounding boxes in the training dataset, and takes the box
scale and aspect ratio of the 𝑘 centroids as the anchor boxes. It also
extracts image features using CNN, and for each grid of the feature
map, it generates a set of bounding boxes. For each box, it computes
the objectness scores, regresses the box coordinates and classifies
the object in the bounding box.

CenterNet [17] is an one-stage anchor-free object detection
technique. Instead of generating bounding box based on the pre-
defined anchor boxes, it predicts the position of the top-left and
bottom-right corners and the center of an object, and then assem-
bles them to get the bounding box of an object. It matches top-left
corners with bottom-right corners if their distance is less than a
threshold, and only keep pairs whose center point has a centerness
score higher than a threshold.

Tesseract [42] is an OCR tool for document texts. It consists of
two steps: text line detection and text recognition. Only the text
line detection is relevant to our study. The Tesseract’s text line
detection is old-fashioned. It first converts the image into binary
map, and then performs a connected component analysis to find
the outlines of the elements. These outlines are then grouped into
blobs, which are further merged together. Finally, it merges text
lines that overlap at least half horizontally.

EAST [55] is a deep learning technique to detect text in natural
scenes. An input image is first fed into a feature pyramid network.
EAST then computes six values for each point based on the final
feature map, namely, an objectness score, top/left/bottom/right
offsets and a rotation angle. For this baseline, we directly use the
pre-trained model to detect texts in GUIs without any fine-tuning.

3.2.3 Model Training. For Faster RCNN, YOLOv3 and CenterNet,
we initialize their parameters using the corresponding pretrained
models of COCO object detection dataset and finetune all parame-
ters using our GUI training dataset. We train each model for 160
iterations with a batch size of 8, and use Adam optimizer. Faster
RCNN uses ResNet-101[24] as the backbone. YOLOv3 uses Darknet-
53[38] as the backbone. CenterNet uses Hourglass-52[50] as the

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA J. Chen, M. Xie, Z. Xing, C. Chen, X. Xu, L. Zhu, and G. Li

Figure 3: Performance at different IoU thresholds

backbone. For Xianyu and REMAUI, we perform the parameter
tuning and use the best setting in all our evaluation. We perform
non-maximum suppression (NMS) to remove highly-duplicated
predictions in all experiments. It keeps the prediction with the high-
est objectness in the results and removes others that have a IoU
with the selected one over a certain value. We find the best object
confidence threshold for each model using the validation dataset.1

3.2.4 Metrics. For region detection evaluation, we ignore the class
prediction results and only evaluate the ability of different methods
to detect the bounding box of GUI elements. We use precision,
recall and F1-score to measure the performance of region detection.
Precision is𝑇𝑃/(𝑇𝑃 +𝐹𝑃) and recall is𝑇𝑃/(𝑇𝑃 +𝐹𝑁). True positive
(TP) refers to a detected bounding box which matches a ground
truth box. False positive (FP) refers to a detected box which does not
match any ground truth boxes. False negative (FN) refers to a ground
truth bounding box which is not matched by any detected boxes.
We compute F1-score as: 𝐹1 = (2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+
𝑅𝑒𝑐𝑎𝑙𝑙). TP is determined based on the Intersection over Union (IoU)
of the two boxes. IoU is calculated by dividing the intersection area
𝐼 of the two boxes 𝐴 and 𝐵 by the union area of the two boxes, i.e.,
𝐼/(𝐴+𝐵− 𝐼). A detected box is considered as a TP if the highest IoU
of this box with any ground-truth boxes in the input GUI image
is higher than a predefined IoU threshold. Each ground truth box
can only be matched at most once and NMS technique is used
to determine the optimal matching results. Considering the high
accuracy requirement of GUI element detection, we take the IoU
threshold 0.9 in most of our experiments.

3.3 Results - RQ1 Performance
This section reports the performance of five methods for detecting
the regions of non-text GUI elements in a GUI. In this RQ, Faster
RCNN uses the customized anchor-box setting and YOLOv3 uses
𝑘=9 (see Section 3.4.1).

3.3.1 Trade-off between Bounding-Box Accuracy and GUI-Element
Coverage. Figure 3 shows the performance of five methods at dif-
ferent IoU thresholds. The F1-score of all deep learning models
drop significantly when the IoU threshold increases from 0.5 to
0.9, with the 31%, 45% and 28% decrease for Faster-RCNN, YOLOv3
and CenterNet respectively. The bounding box of a RoI is predicted
by statistical regression in the high-layer feature map of the CNN,
where one pixel in this abstract feature map corresponds to a pixel
block in the original image. That is, a minor change of the predicted

1All codes and models are released at our GitHub repository.

Table 2: Performance: non-text element detection (IoU>0.9)

Method #bbox Precision Recall F1
REMAUI 54,903 0.175 0.238 0.201
Xianyu 47,666 0.142 0.168 0.154
Faster-RCNN 39,995 0.440 0.437 0.438
YOLOv3 36,191 0.405 0.363 0.383
CenterNet 36,096 0.424 0.380 0.401

coordinates in the abstract feature map will lead to a large change
in the exact position in the original image. Therefore, deep learning
models either detect more elements with loose bounding boxes
or detect less elements with accurate bounding boxes. In contrast,
the F1-score of REMAUI and Xianyu does not drop as significantly
as that of deep learning models as the IoU threshold increases,
but their F1-scores are much lower than those of deep learning
models. This suggests that the detected element regions by these
old-fashioned methods are mostly noise, but when they do locate
real elements, the detected bounding boxes are fairly accurate.

3.3.2 Performance Comparison. We observe that if the detected
bounding box has <0.9 IoU over the corresponding GUI element,
not only does the box miss some portions of this element, but it
also includes some portions of adjacent elements due to the packed
characteristic of GUI design. Therefore, we use IoU> 0.9 as an
acceptable accuracy of bounding box prediction. Table 2 shows the
overall performance of the five methods at IoU>0.9 threshold for
detecting non-text GUI elements.

Xianyu performs the worst, with all metrics below 0.17. We ob-
serve that Xianyu works fine for simple GUIs, containing some GUI
elements on a clear or gradient background (e.g., Xianyu-(c)/(d) in
Figure 6). When the GUI elements are close-by or placed on a com-
plex background image, Xianyu’s slicingmethod and its background
de-noising algorithms do not work well. For example, in Xianyu-
(a)/(b) in Figure 6, it misses most of GUI elements. Xianyu performs
slicing by the horizontal or vertical lines across the whole GUI. Such
lines often do not exist in GUIs, especially when they have complex
background images (Xianyu-(a)) or the GUI elements are very close-
by (Xianyu-(b)). This results in many under-segmentation of GUI
images and the misses of many GUI elements. Furthermore, Xianyu
sometimes may over-segment the background image (Xianyu-(a)),
resulting in many noise non-GUI-element regions.

REMAUI performs better than Xianyu, but it is still much worse
than deep learning models. It suffers from similar problems as
Xianyu, including ineffective background de-noising and over-
segmentation. It outperforms Xianyu because it merges close-by
edges to construct bounding boxes instead of the simple slicing
method by horizontal/vertical lines. However, for GUIs with im-
age background, its edge merging heuristics often fail due to the
noisy edges of physical-world objects in the images. As such, it
often reports some non-GUI-element regions of the image as ele-
ment regions, or erroneously merges close-by elements, as shown
in Figure 6. Furthermore, REMAUI merges text and non-text re-
gion heuristically, which are not very reliable either (see the text
elements detected as non-text elements in REMAUI-(b)/(c)/(d)).

Deep learning models perform much better than old fashioned
methods. In Figure 6, we see that they all locate some GUI elements,
even those overlaying on the background picture. These models are

https://github.com/chenjshnn/Object-Detection-for-Graphical-User-Interface

Object Detection for Graphical User Interface: Old Fashioned or Deep Learning or a Combination? ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 3: Impact of anchor-box settings (IoU>0.9)

Setting Precision Recall F1
Faster RCNN Default 0.433 0.410 0.421
Faster RCNN Customized 0.440 0.437 0.438
Faster RCNN Union 0.394 0.469 0.428
Faster RCNN Intersection 0.452 0.460 0.456
YOLOv3 k=5 0.394 0.333 0.361
YOLOv3 k=9 0.405 0.363 0.383
YOLO Union 0.372 0.375 0.373
YOLO Intersection 0.430 0.424 0.427
Table 4: Impact of amount of training data (IoU>0.9)

Method Size Precision Recall F1

Faster-RCNN
2K 0.361 0.305 0.331
10K 0.403 0.393 0.398
40K 0.440 0.437 0.438

YOLOv3
2K 0.303 0.235 0.265
10K 0.337 0.293 0.313
40K 0.405 0.363 0.383

CenterNet
2K 0.319 0.313 0.316
10K 0.328 0.329 0.329
40K 0.424 0.380 0.401

trained with large-scale data, “see” many sophisticated GUIs, and
thus can locate GUI elements even in a noisy background. How-
ever, we also observe that the detected bounding boxes by deep
learning models may not be very accurate, as they are estimated by
a statistical regression model. The two-stage model Faster RCNN
outperforms the other two one-stage models YOLOv3 and Center-
Net. As discussed in Section 2.1, GUI elements have large in-class
variance and high cross-class similarity. Two stage models per-
form region detection and region classification in a pipeline so that
these two steps are less mutually interfered,while one-stage models
perform region detection and region classification simultaneously.

Between the two one-stage models, anchor-free CenterNet out-
performs anchor-box-based YOLOv3 at IoU>0.9. However, YOLOv3
performs better than CenterNet at lower IoU thresholds (see Fig-
ure 3). Anchor-free model is flexible to handle the large in-class
variance of GUI elements and GUI texts (see more experiments
on GUI text detection in Section 3.5). However, as shown in Fig-
ure 6, this flexibility is a double-blade, which may lead to less
accurate bounding boxes, or bound several elements in one box
(e.g., CenterNet-(a)/(d)). Because GUI elements are often close-by
or packed in a GUI, CenterNet very likely assembles the top-left
and bottom-right corners of different GUI elements together, which
leads to the wrong bounding boxes.
Deep learning models significantly outperform old-fashioned de-
tection methods. Two-stage anchor-box-based models perform the
best in non-text GUI element detection task. But it is challenging
for the deep learning models to achieve a good balance between
the accuracy of the detected bounding boxes and the detected GUI
elements, especially for anchor-free models.

3.4 Results - RQ2 Sensitivity
This section reports the sensitivity analysis of the deep learning
models for region detection from two aspects: anchor-box settings
and amount of training data.

Table 5: Text detection: separated versus unified processing

Method Element Precision Recall F1

Faster-RCNN

nontext-only 0.440 0.437 0.438

mix
nontext 0.379 0.436 0.405
text 0.275 0.250 0.262
both 0.351 0.359 0.355

YOLOv3

nontext-only 0.405 0.363 0.383

mix
non-text 0.325 0.347 0.335
text 0.319 0.263 0.288
both 0.355 0.332 0.343

CenterNet

nontext-only 0.424 0.380 0.401

mix
non-text 0.321 0.397 0.355
text 0.416 0.319 0.361
both 0.391 0.385 0.388

3.4.1 Anchor-Box Settings. For Faster RCNN, we use two settings:
the default setting (three anchor-box scales - 128, 256 and 512, and
three aspect ratios - 1:1, 1:2 and 2:1); and the customized setting
(five anchor-box scales - 32, 64, 128, 256 and 512, and four aspect
(width:height) ratios - 1:1, 2:1, 4:1 and 8:1). This customized setting
is drawn from the frequent scales and aspect ratios of the GUI
elements in our dataset. Considering the size of GUI elements, we
add two small scales 32 and 64. Furthermore, we add two more
aspect ratios to accommodate the large variance of GUI elements.
For YOLOv3, we use two 𝑘 settings: 5 and 9, which are commonly
used in the literature. YOLOv3 automatically derives anchor-box
metrics from 𝑘 clusters of GUI images in the dataset.

Table 3 shows the model performance (at IoU>0.9) of these differ-
ent anchor-box settings. It is somehow surprising that there is only
a small increase in F1 when we use more anchor-box scales and
aspect ratios. We further compare the TPs of different anchor-box
settings. We find that 55% of TPs overlap between the two settings
for Faster RCNN, and 67% of TPs overlap between the two settings
for YOLOv3. As the scales and aspect ratios of GUI elements follow
standard distributions, using a smaller number of anchor boxes can
still covers a large portion of the element distribution.

As different settings detect some different bounding boxes, we
want to see if the differences may complement each other. To that
end, we adopt two strategies to merge the detected boxes by the
two settings: union strategy and intersection strategy. For two
overlapped boxes, we take the maximum objectness of them, and
then merge the two boxes by taking the union/intersection area for
union/interaction strategy. For the rest of the boxes, we directly
keep them. We find the best object confidence threshold for the
combined results using the validation dataset. The union strategy
does not significantly affect the F1, which means that making the
bounding boxes larger is not very useful. In fact, for the boxes
which are originally TPs by one setting, the enlarged box could
even become FPs. However, the intersection strategy can boost the
performance of both Faster RCNN and YOLOv3, achieving 0.456
and 0.427 in F1 respectively. It is reasonable because the intersection
area is confirmed by the two settings, and thus more accurate.

3.4.2 Amount of Training Data. In this experiment, Faster RCNN
uses the customized anchor-box setting and YOLOv3 uses 𝑘=9. We
train the models with 2K, 10K, 40K training data separately, and test
the models on the same 5k GUI images. Each 2k- or 10k experiment
uses randomly selected 2k or 10k GUIs in the 40k training data.
As shown in Table 4, the performance of all models drops as the

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA J. Chen, M. Xie, Z. Xing, C. Chen, X. Xu, L. Zhu, and G. Li

training data decreases. This is reasonable because deep learning
models cannot effectively learn the essential features of the GUI
elements without sufficient training data. The relative performance
of the three models is consistent at the three training data sizes,
with YOLOv3 always being the worst. This indicates the difficulty
in training one-stage anchor-box model. Faster RCNN with 2k (or
10k) training data achieves the comparable or higher F1 than that of
YOLOv3 and CenterNet with 10k (or 40k) training data. This result
further confirms that two-stage model fits better for GUI element
detection tasks than one-stage model, and one-stage anchor-free
model performs better than one-stage anchor-box model.
Anchor-box settings do not significantly affect the performance of
anchor-box-based models, because a small number of anchor boxes
can cover the majority of GUI elements. Two-stage anchor-box-
based model is the easiest to train, which requires one magnitude
less training data to achieve comparable performance as one-stage
model. One stage anchor-box model is the most difficult to train.

3.5 Results - RQ3 Text Detection
3.5.1 Separated versus Unified Text/Non-Text Element Detection.
All existing works detect GUI text separately from non-text ele-
ments. This is intuitive in that GUI text and non-text elements have
very different visual features. However, we were wondering if this
is a must or text and non-text elements can be reliably detected by
a single model. To answer this, we train Faster RCNN, YOLOv3 and
CenterNet to detect both text and non-text GUI elements. Faster
RCNN uses the customized anchor-box setting and YOLOv3 uses
𝑘=9. The model is trained with 40k data and tested on 5k GUI im-
ages. In this RQ, both non-text and text elements in GUIs are used
for model training and testing.

Table 5 shows the results. When trained to detect text and non-
text elements together, Faster RCNN still performs the best in terms
of detecting non-text elements. But the performance of all three
models for detecting non-text elements degrades, compared with
the models trained to detect non-text elements only. This indicates
that mixing the learning of text and non-text element detection
together interfere with the learning of detecting non-text elements.
CenterNet performs much better for detecting text elements than
Faster RCNN and YOLOv3, which results in the best overall per-
formance for the mixed text and non-text detection. CenterNet
is anchor-free, which makes it flexible to handle large variance
of text patterns. So it has comparable performance for text and
non-text elements. In contrast, anchor-box-based Faster RCNN and
YOLOv3 are too rigid to reliably detect text elements. However, the
performance of CenterNet in detecting text elements is still poor.
Text elements always have space between words and lines. Due
to the presence of these spaces, CenterNet often detects a partial
text element or erroneously groups separate text elements as one
element when assembling object corners.

3.5.2 OCR versus Scene Test Recognition. Since it is not feasible to
detect text and non-text GUI elements within a single model, we
want to investigate what is the most appropriate method for GUI
text detection. All existing works (e.g., REMAUI, Xianyu) simply use
OCR tool like Tesseract. We observe that GUI text is more similar
to scene text than to document text. Therefore, we adopt a deep
learning scene text recognition model EAST for GUI text detection,

Table 6: Text detection: OCR versus scene text

Method Precision Recall F1
Tesseract 0.291 0.518 0.372
EAST 0.402 0.720 0.516
REMAUI 0.297 0.489 0.369
Xianyu 0.272 0.481 0.348

and compare it with Tesseract. We directly use the pre-trained EAST
model without any fine tuning on GUI text.

As shown in Table 6, EAST achieves 0.402 in precision, 0.720 in
recall and 0.516 in F1, which is significantly higher than Tesseract
(0.291 in precision, 0.518 in recall and 0.372 in F1). Both Xianyu
and REMAUI perform some post-processing of the Tesseract’s OCR
results in order to filter out false positives. But it does not signifi-
cantly change the performance of GUI text detection. As EAST is
specifically designed for scene text recognition, its performance is
significantly better than using generic object detection models for
GUI text detection (see Table 5). EAST detects almost all texts in
a GUI, including those on the GUI widgets (e.g., the button labels
in Figure 4(c)). However, those texts on GUI widgets are consid-
ered as part of the widgets in our ground-truth data, rather than
stand-alone texts. This affects the precision of EAST against our
ground-truth data, even though the detected texts are accurate.

Figure 4 presents some detection results. Tesseract achieves the
comparable results as EAST only for the left side of Figure 4(d),
where text is shown on a white background just like in a document.
From all other detection results, we can observe the clear advantages
of treating GUI text as scene text than as document text. First, EAST
can accurately detect text in background image (Figure 4(a)), while
Tesseract outputs many inaccurate boxes in such images. Second,
EAST can detect text in a low contrast background (Figure 4(b)),
while Tesseract oftenmisses such texts. Third, EAST can ignore non-
text elements (e.g., the bottom-right switch buttons in Figure 4(b),
and the icons on the left side of Figure 4(d)), while Tesseract often
erroneously detects such non-text elements as text elements.
GUI text and non-text elements should be detected separately. Nei-
ther OCR techniques nor generic object detection models can reliably
detect GUI texts. As GUI texts have the characteristics of scene text,
the deep learning scene text recognition model can be used (even
without fine-tuning) to accurately detect GUI texts.

4 A NOVEL APPROACH
Based on the findings in our empirical study, we design a novel
approach for GUI element detection. Our approach combines the
simplicity of old-fashioned computer vision methods for non-text-
element region detection, and the mature, easy-to-deploy deep
learningmodels for region classification and GUI text detection (Sec-
tion 4.1). This synergy achieves the state-of-the-art performance
for the GUI element detection task (Section 4.2).

4.1 Approach Design
Our approach detects non-text GUI elements and GUI texts sepa-
rately. For GUI text detection, we simply use the pre-trained state-
of-the-art scene text detector EAST [55]. For non-text GUI element

Object Detection for Graphical User Interface: Old Fashioned or Deep Learning or a Combination? ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

detection, we adopt the two-stage design, i.e, perform region detec-
tion and region classification in a pipeline. For region detection, we
develop a novel old-fashioned method with a top-down coarse-to-
fine strategy and a set of GUI-specific image processing algorithms.
For region classification, we fine-tune the pre-trained ResNet50
image classifier [24] with GUI element images.

4.1.1 Region Detection for Non-Text GUI Elements. According to
the performance and sensitivity experiments results, we do not
want to use generic deep learning object detection models [17,
37, 40]. First, they demand sufficient training data, and different
model designs require different scale of training data to achieve
stable performance. Furthermore, the model performance is still
less optimal even with a large set of training data, and varies across
different model designs. Second, the nature of statistical regression
based region detection cannot satisfy the high accuracy requirement
of GUI element detection. Unlike generic object detection where
a typical correct detection is defined loosely (e.g, IoU>0.5) [18]),
detecting GUI elements is a fine-grained recognition task which
requires a correct detection that covers the full region of the GUI
elements as accurate as possible, but the region of non-GUI elements
and other close-by GUI elements as little as possible. Unfortunately,
neither anchor-box based nor anchor-free models can achieve this
objective, because they are either too strict or too flexible in face of
large in-class variance of element sizes and texture, high cross-class
shape similarity, and the presence of close-by GUI elements.

Unlike deep learning models, old-fashioned methods [33, 52] do
not require any training which makes them easy to deploy. Fur-
thermore, when old fashioned methods locate some GUI elements,
the detected bounding boxes are usually accurate, which is desir-
able. Therefore, we adopt old-fashioned methods for non-text GUI-
element region detection. However, existing old-fashioned methods
use a bottom-up strategy which aggregates the fine details of the
objects (e.g., edge or contour) into objects. This bottom-up strategy
performs poorly, especially affected by the complex background or
objects in the GUIs and GUI elements. As shown in Figure 5, our
method adopts a completely different strategy: top-down coarse-to-
fine. This design carefully considers the regularity of GUI layouts
and GUI-element shapes and boundaries, as well as the significant
differences between the shapes and boundaries of artificial GUI
elements and those of physical-world objects.

Our region detection method first detects the layout blocks of a
GUI. The intuition is that GUIs organize GUI elements into distinct
blocks, and these blocks generally have rectangle shape. Xianyu
also detects blocks, but it assumes the presence of clear horizontal
and vertical lines. Our method does not make this naive assumption.
Instead, it first uses the flood-filling algorithm [47] over the grey-
scale map of the input GUI to obtain the maximum regions with
similar colors, and then uses the shape recognition [36] to determine
if a region is a rectangle. Each rectangle region is considered as
a block. Finally, it uses the Suzuki’s Contour tracing algorithm
[44] to compute the boundary of the block and produce a block
map. In Figure 5, we show the detected block in different colors
for the presentation clarity. Note that blocks usually contain some
GUI elements, but some blocks may correspond to a particular GUI
element.

Figure 4: Examples: OCR versus scene text

Figure 5: Our method for non-text GUI element detection

Next, our method generates a binary map of the input GUI,
and for each detected block, it segments the corresponding region
of the binary map. Binarization simplifies the input image into a
black-white image, on which the foreground GUI elements can be
separated from the background. Existing methods [33, 52] perform
binarization through Canny edge detection [7] and Sobel edge
detection [20], which are designed to keep fine texture details in
nature scene images. Unfortunately, this detail-keeping capability
contradicts the goal of GUI element detection, which is to detect the
shape of GUI elements, rather than their content and texture details.
For example, we want to detect an ImageView element no matter

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA J. Chen, M. Xie, Z. Xing, C. Chen, X. Xu, L. Zhu, and G. Li

Figure 6: Region detection results for non-text GUI element: our method versus five baselines

what objects are shown in the image (see Figure 6). We develop
a simple but effective binarization method based on the gradient
map [21] of the GUI images. A gradient map captures the change of
gradient magnitude between neighboring pixels. If a pixel has small
gradient with neighboring pixels, it becomes black on the binary
map, otherwise white. As shown in Figure 5, the GUI elements
stand out from the background in the binary map, either as white
region on the black background or black region with white edge.

Our method uses the connected component labeling [41] to
identify GUI element regions in each binary block segment. It takes
as input the binarized image and performs two-pass scanning to
label the connected pixels. As GUI elements can be any shape, it
identifies a smallest rectangle box that covers the detected regions
as the bounding boxes. Although our binarization method does
not keep many texture details of non-GUI objects, the shape of
non-GUI objects (e.g., those buildings in the pictures) may still be
present in the binary map. These noisy shapes interfere existing
bottom-up aggregation methods [7, 44] for GUI element detection,
which results in over-segmentation of GUI elements. In contrast,
our top-down detection strategy minimizes the influence of these
non-GUI objects, because it uses relaxed grey-scale map to detect
large blocks and then uses strict binary map to detect GUI elements.
If a block is classified as an image, our method will not further
detect GUI elements in this block.

4.1.2 Region Classification for Non-Text GUI Elements. For each
detected GUI element region in the input GUI, we use a ResNet50
image classifier to predict its element type. In this work, we consider
15 element types as shown in Figure 1. The Resnet50 image classifier
is pre-trained with the ImageNet data. We fine-tune the pre-trained

model with 90,000 GUI elements (6,000 per element type) randomly
selected from the 40k GUIs in our training dataset.

4.1.3 GUI Text Detection. Section 3.5 shows that GUI text should
be treated as scene text and be processed separately from non-
text elements. Furthermore, scene text recognition model performs
much better than generic object detection models. Therefore, we
use the state-of-the-art deep-learning scene text detector EAST [55]
to detect GUI text. As shown in Figure 4(c), EAST may detect texts
that are part of non-image GUI widgets (e.g., the text on the buttons).
Therefore, if the detected GUI text is inside the region of a non-
image GUI widgets, we discard this text.

4.2 Evaluation
Table 7 shows the region-detection performance for non-text, text
and both types of elements. For non-text GUI elements, our ap-
proach performs better than the best baseline Faster RCNN (0.523
versus 0.438 in F1). For text elements, our approach is overall the
same as EAST. It is better than EAST in precision, because our
approach discards some detected texts that are a part of GUI wid-
gets. But this degrades the recall. For text and non-text elements
as a whole, our approach performs better than the best baseline
CenterNet (0.573 versus 0.388 in F1).

Figure 6 shows the examples of the detection results by our
approach and the five baselines. Compared with REMAUI and Xi-
anyu, our method detects much more GUI elements and much less
noisy non-GUI element regions, because of our robust top-down
coarse-to-fine strategy and GUI-specific image processing (e.g., con-
nected component labeling rather than canny edge and contour).
Our method also detects more GUI elements than the three deep

Object Detection for Graphical User Interface: Old Fashioned or Deep Learning or a Combination? ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 7: Detection performance of our approach (IoU>0.9)

Elements Precision Recall F1
non-text 0.503 0.545 0.523
text 0.589 0.547 0.516
both 0.539 0.612 0.573

Table 8: Region classification results for TP regions

Non-text elements All elements
Method #bbox Accuracy #bbox Accuracy
FasterRCNN 18,577 0.68 34,915 0.68
YOLOv3 15,428 0.64 32,225 0.65
Centernet 16,072 0.68 36,803 0.66
Our method 21,977 0.86 53,027 0.91

Table 9: Overall results of object detection (IoU > 0.9)

Non-text elements All elements
Method Precision Recall F1 Precision Recall F1
Faster-RCNN 0.316 0.313 0.315 0.269 0.274 0.271
YOLOv3 0.274 0.246 0.260 0.258 0.242 0.249
CenterNet 0.302 0.270 0.285 0.284 0.280 0.282
Xianyu 0.122 0.145 0.133 0.270 0.405 0.324
REMAUI 0.151 0.205 0.173 0.296 0.449 0.357
Our method 0.431 0.469 0.449 0.490 0.557 0.524

learning models. Furthermore, it outputs more accurate bounding
boxes and less overlapping bounding boxes, because our method
performs accurate pixel analysis rather than statistical regression in
the high-layer of CNN. Note that deep learning models may detect
objects in images as GUI elements, because there are GUI elements
of that size and with similar visual features. In contrast, our method
detects large blocks that are images and treats such images as whole.
As such, our method suffers less over-segmentation problem.

We conclude three main reasons when our model fails. First,
same look and feel UI regions may correspond to different types of
widgets, such as text label versus text button without border. This
is similar to the widget tappability issue studied in [46]. Second, the
repetitive regions in a dense UI (e.g., Figure 6(b)) often have incon-
sistent detection results. Third, it is sometimes hard to determine
whether a text region is a text label or part of a widget containing
text, for example, the spinner showing USA at the top of Figure 6(b).
Note that these challenges affect all methods. We leave them as our
future work.

Table 8 shows the region classification results of our CNN classi-
fier and the three deep learning baselines. The results consider only
true-positive bounding boxes, i.e., the classification performance
given the accurate element regions. As text elements are outputted
by EAST directly, we show the results for non-text elements and all
elements. We can see that our method outputs more true-positive
GUI element regions, and achieves higher classification accuracy
(0.86 for non-text elements and 0.91 for all elements, and the other
three deep models achieves about 0.68 accuracy). Our classification
accuracy is consistent with [31], which confirms that the effective-
ness of a pipeline design for GUI element detection.

Table 9 shows the overall object detection results, i.e., the true-
positive bounding box with the correct region classification over all
detected element regions. Among the three baseline models, Faster

RCNN performs the best for non-text elements (0.315 in F1), but
CenterNet, due to this model flexibility to handle GUI texts, achieves
the best performance for all elements (0.282 in F1). Compared with
these three baselines, our method achieves much better F1 for both
non-text elements (0.449) and all elements (0.524), due to its strong
capability in both region detection and region classification.

5 RELATEDWORK
GUI design, implementation and testing are important software
engineering tasks, to name a few, GUI code generation [5, 10, 31],
GUI search [8, 9, 11, 25, 54], GUI design examination [32, 46, 53],
reverse-engineering GUI dataset [13, 15], GUI accessibility [12], GUI
testing [4, 26, 29, 35, 48] and GUI security [14, 49]. Many of these
tasks require the detection of GUI elements. As an example, the RQ4
in [48] shows exploiting exact widget locations by instrumentation
achieves significantly higher branch coverage than predicted loca-
tions in GUI testing, but widget detection (by YOLOv2) can interact
with widgets not detected by instrumentation. Our work focuses on
the foundational technique to improve widget detection accuracy,
which opens the door to keep the advantage of widget detection
while achieving the benefits of instrumentation in downstream
applications like GUI testing.

Table 1 and Section 3.2.2 summarizes the old-fashioned methods
(e.g., REMAUI [33] and Xianyu [52]) designed for GUI element de-
tection, the generic object detection models (Faster RCNN, YOLOv3
and CenterNet) applied for non-text GUI element detection, and
the old-fashioned OCR tool Tesseract [42] and the state-of-the-art
scene text detector EAST [55] for GUI text detection. Our empirical
study shows that old-fashioned methods perform poorly for both
text and non-text GUI element detection. Generic object detection
models perform better than old-fashioned ones, but they cannot
satisfy the high accuracy requirement of GUI element detection.
Our method advances the state-of-the-art in GUI element detection
by effectively assembling the effective designs of existing methods
and a novel GUI-specific old-fashioned region detection method.

6 CONCLUSION
This paper investigates the problem of GUI element detection. We
identify four unique characteristics of GUIs and GUI elements, in-
cluding large in-class variance, high cross-class similarity, packed or
close-by elements and mix of heterogeneous objects. These charac-
teristics make it a challenging task for existing methods (no matter
old fashioned or deep learning) to accurately detect GUI elements
in GUI images. Our empirical study reveals the underperformance
of existing methods borrowed from computer vision domain and
the underlying reasons, and identifies the effective designs of GUI
element detection methods. Informed by our study findings, we de-
sign a new GUI element detection approach with both the effective
designs of existing methods and the GUI characteristics in mind.
Our new method achieves the state-of-the-art performance on the
largest-ever evaluation of GUI element detection methods.

ACKNOWLEDGMENTS
This research was partially supported by the Australian National
University Data61 Collaborative Research Project(CO19314) and
Facebook gift funding.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA J. Chen, M. Xie, Z. Xing, C. Chen, X. Xu, L. Zhu, and G. Li

REFERENCES
[1] Nikola Banovic, Tovi Grossman, Justin Matejka, and George Fitzmaurice. 2012.

Waken: reverse engineering usage information and interface structure from
software videos. In Proceedings of the 25th annual ACM symposium on User
interface software and technology. 83–92.

[2] Lingfeng Bao, Jing Li, Zhenchang Xing, Xinyu Wang, and Bo Zhou. 2015. scvRip-
per: video scraping tool for modeling developers’ behavior using interaction data.
In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
Vol. 2. IEEE, 673–676.

[3] Lingfeng Bao, Deheng Ye, Zhenchang Xing, Xin Xia, and Xinyu Wang. 2015.
Activityspace: a remembrance framework to support interapplication information
needs. In 2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 864–869.

[4] Carlos Bernal-Cardenas, Nathan Cooper, Kevin Moran, Oscar Chaparro, Andrian
Marcus, and Denys Poshyvanyk. 2020. Translating Video Recordings of Mo-
bile App Usages into Replayable Scenarios. In 42nd International Conference on
Software Engineering (ICSE ’20). ACM, New York, NY.

[5] Pavol Bielik, Marc Fischer, and Martin Vechev. 2018. Robust relational layout
synthesis from examples for Android. Proceedings of the ACM on Programming
Languages 2, OOPSLA (2018), 1–29.

[6] Karl Bridge and Michael Satran. 2018. Windows Accessibility API overview. Re-
trieved March 2, 2020 from https://docs.microsoft.com/en-us/windows/win32/
winauto/windows-automation-api-portal

[7] J. Canny. 1986. A Computational Approach to Edge Detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence PAMI-8, 6 (Nov 1986), 679–698.
https://doi.org/10.1109/TPAMI.1986.4767851

[8] Chunyang Chen, Sidong Feng, Zhengyang Liu, Zhenchang Xing, and Shengdong
Zhao. 2020. From Lost to Found: Discover Missing UI Design Semantics through
Recovering Missing Tags. Proceedings of the ACM on Human-Computer Interaction
4, CSCW (2020).

[9] Chunyang Chen, Sidong Feng, Zhenchang Xing, Linda Liu, Shengdong Zhao,
and Jinshui Wang. 2019. Gallery DC: Design Search and Knowledge Discovery
through Auto-created GUI Component Gallery. Proceedings of the ACM on
Human-Computer Interaction 3, CSCW (2019), 1–22.

[10] Chunyang Chen, Ting Su, Guozhu Meng, Zhenchang Xing, and Yang Liu. 2018.
From UI design image to GUI skeleton: a neural machine translator to bootstrap
mobile GUI implementation. In Proceedings of the 40th International Conference
on Software Engineering. 665–676.

[11] Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xin Xia, Liming Zhu, John
Grundy, and Jinshui Wang. 2020. Wireframe-based UI design search through
image autoencoder. ACM Transactions on Software Engineering and Methodology
(TOSEM) 29, 3 (2020), 1–31.

[12] Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei Xu, Liming Zhu, Guo-
qiang Li, and Jinshui Wang. 2020. Unblind Your Apps: Predicting Natural-
Language Labels for Mobile GUI Components by Deep Learning. In 42nd In-
ternational Conference on Software Engineering (ICSE ’20). ACM, New York, NY,
13 pages. https://doi.org/10.1145/3377811.3380327

[13] Sen Chen, Lingling Fan, Chunyang Chen, Ting Su, Wenhe Li, Yang Liu, and Lihua
Xu. 2019. Storydroid: Automated generation of storyboard for Android apps.
In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE).
IEEE, 596–607.

[14] Sen Chen, Lingling Fan, Chunyang Chen, Minhui Xue, Yang Liu, and Lihua Xu.
2019. GUI-Squatting Attack: Automated Generation of Android Phishing Apps.
IEEE Transactions on Dependable and Secure Computing (2019).

[15] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,
Yang Li, Jeffrey Nichols, and Ranjitha Kumar. 2017. Rico: A mobile app dataset
for building data-driven design applications. In Proceedings of the 30th Annual
ACM Symposium on User Interface Software and Technology. 845–854.

[16] Morgan Dixon and James Fogarty. 2010. Prefab: implementing advanced behav-
iors using pixel-based reverse engineering of interface structure. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. 1525–1534.

[17] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang, and Qi
Tian. 2019. Centernet: Keypoint triplets for object detection. In Proceedings of
the IEEE International Conference on Computer Vision. 6569–6578.

[18] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and
Andrew Zisserman. 2009. The Pascal Visual Object Classes (VOC) Challenge.
International Journal of Computer Vision 88, 2 (Sep 2009), 303–338. https://doi.
org/10.1007/s11263-009-0275-4

[19] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and
Andrew Zisserman. 2010. The pascal visual object classes (voc) challenge. Inter-
national journal of computer vision 88, 2 (2010), 303–338.

[20] Rafael C. Gonzalez and Richard E.Woods. 1993. Digital image processing. Addison-
Wesley.

[21] Rafael C. Gonzalez and Richard E. Woods. 2014. Digital image processing. Dorling
Kindersley.

[22] Google. 2019. UI Automator. Retrieved March 2, 2020 from https://developer.
android.com/training/testing/ui-automator

[23] Google. 2020. Build more accessible apps. Retrieved March 2, 2020 from https:
//developer.android.com/guide/topics/ui/accessibility

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[25] Forrest Huang, John F Canny, and Jeffrey Nichols. 2019. Swire: Sketch-based user
interface retrieval. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems. 1–10.

[26] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2019. Humanoid: A
Deep Learning-Based Approach to Automated Black-box Android App Testing. In
2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 1070–1073.

[27] Feng Lin, Chen Song, Xiaowei Xu, Lora Cavuoto, and Wenyao Xu. 2016. Sensing
from the bottom: Smart insole enabled patient handling activity recognition
through manifold learning. In 2016 IEEE First International Conference on Con-
nected Health: Applications, Systems and Engineering Technologies (CHASE). IEEE,
254–263.

[28] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In European conference on computer vision. Springer, 740–755.

[29] Zhe Liu, Chunyang Chen, Junjie Wang, Yuekai Huang, Jun Hu, and Qing Wang.
2020. Owl Eyes: Spotting UI Display Issues via Visual Understanding. In Proceed-
ings of the 35th International Conference on Automated Software Engineering.

[30] Microsoft. 2016. Introducing Spy++. Retrieved March 2, 2020
from https://docs.microsoft.com/en-us/visualstudio/debugger/introducing-spy-
increment?view=vs-2019

[31] Kevin Moran, Carlos Bernal-Cárdenas, Michael Curcio, Richard Bonett, and
Denys Poshyvanyk. 2018. Machine learning-based prototyping of graphical user
interfaces for mobile apps. arXiv preprint arXiv:1802.02312 (2018).

[32] Kevin Moran, Boyang Li, Carlos Bernal-Cárdenas, Dan Jelf, and Denys Poshy-
vanyk. 2018. Automated reporting of GUI design violations for mobile apps. In
Proceedings of the 40th International Conference on Software Engineering. 165–175.

[33] Tuan Anh Nguyen and Christoph Csallner. 2015. Reverse engineering mobile
application user interfaces with remaui (t). In 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 248–259.

[34] Suporn Pongnumkul, Mira Dontcheva, Wilmot Li, Jue Wang, Lubomir Bourdev,
Shai Avidan, and Michael F Cohen. 2011. Pause-and-play: automatically linking
screencast video tutorials with applications. In Proceedings of the 24th annual
ACM symposium on User interface software and technology. 135–144.

[35] Ju Qian, Zhengyu Shang, Shuoyan Yan, Yan Wang, and Lin Chen. 2020. RoScript:
A Visual Script Driven Truly Non-Intrusive Robotic Testing System for Touch
Screen Applications. In 42nd International Conference on Software Engineering
(ICSE ’20). ACM, New York, NY.

[36] Urs Ramer. 1972. An iterative procedure for the polygonal approximation of
plane curves. Computer Graphics and Image Processing 1, 3 (1972), 244–256.
https://doi.org/10.1016/s0146-664x(72)80017-0

[37] Joseph Redmon and Ali Farhadi. 2017. YOLO9000: better, faster, stronger. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
7263–7271.

[38] Joseph Redmon and Ali Farhadi. 2018. Yolov3: An incremental improvement.
arXiv preprint arXiv:1804.02767 (2018).

[39] Steven P Reiss, YunMiao, and Qi Xin. 2018. Seeking the user interface. Automated
Software Engineering 25, 1 (2018), 157–193.

[40] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn:
Towards real-time object detection with region proposal networks. In Advances
in neural information processing systems. 91–99.

[41] H. Samet and M. Tamminen. 1988. Efficient component labeling of images of
arbitrary dimension represented by linear bintrees. IEEE Transactions on Pattern
Analysis and Machine Intelligence 10, 4 (1988), 579–586. https://doi.org/10.1109/
34.3918

[42] Ray Smith. 2007. An overview of the Tesseract OCR engine. In Ninth International
Conference on Document Analysis and Recognition (ICDAR 2007), Vol. 2. IEEE, 629–
633.

[43] Mohian Soumik. 2019. pix2app. Retrieved March 2, 2020 from https://github.
com/soumikmohianuta/pixtoapp

[44] Satoshi Suzuki and KeiichiA be. 1985. Topological structural analysis of digi-
tized binary images by border following. Computer Vision, Graphics, and Image
Processing 30, 1 (1985), 32 – 46. https://doi.org/10.1016/0734-189X(85)90016-7

[45] Amanda Swearngin, Mira Dontcheva, Wilmot Li, Joel Brandt, Morgan Dixon,
and Andrew J Ko. 2018. Rewire: Interface design assistance from examples. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
1–12.

[46] Amanda Swearngin and Yang Li. 2019. Modeling Mobile Interface Tappability Us-
ing Crowdsourcing and Deep Learning. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems. 1–11.

[47] Shane Torbert. 2016. Applied computer science. Springer.
[48] Thomas D White, Gordon Fraser, and Guy J Brown. 2019. Improving random

GUI testing with image-based widget detection. In Proceedings of the 28th ACM

https://docs.microsoft.com/en-us/windows/win32/winauto/windows-automation-api-portal
https://docs.microsoft.com/en-us/windows/win32/winauto/windows-automation-api-portal
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1145/3377811.3380327
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-009-0275-4
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/guide/topics/ui/accessibility
https://developer.android.com/guide/topics/ui/accessibility
https://docs.microsoft.com/en-us/visualstudio/debugger/introducing-spy-increment?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/debugger/introducing-spy-increment?view=vs-2019
https://doi.org/10.1016/s0146-664x(72)80017-0
https://doi.org/10.1109/34.3918
https://doi.org/10.1109/34.3918
https://github.com/soumikmohianuta/pixtoapp
https://github.com/soumikmohianuta/pixtoapp
https://doi.org/10.1016/0734-189X(85)90016-7

Object Detection for Graphical User Interface: Old Fashioned or Deep Learning or a Combination? ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

SIGSOFT International Symposium on Software Testing and Analysis. 307–317.
[49] Shengqu Xi, Shao Yang, Xusheng Xiao, Yuan Yao, Yayuan Xiong, Fengyuan

Xu, Haoyu Wang, Peng Gao, Zhuotao Liu, Feng Xu, et al. 2019. DeepIntent:
Deep icon-behavior learning for detecting intention-behavior discrepancy in
mobile apps. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. 2421–2436.

[50] Jing Yang, Qingshan Liu, and Kaihua Zhang. 2017. Stacked hourglass network
for robust facial landmark localisation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops. 79–87.

[51] Tom Yeh, Tsung-Hsiang Chang, and Robert C Miller. 2009. Sikuli: using GUI
screenshots for search and automation. In Proceedings of the 22nd annual ACM
symposium on User interface software and technology. 183–192.

[52] Chen Yongxin, Zhang Tonghui, and Chen Jie. 2019. UI2code: How
to Fine-tune Background and Foreground Analysis. Retrieved Feb 23,

2020 from https://laptrinhx.com/ui2code-how-to-fine-tune-background-and-
foreground-analysis-2293652041/

[53] Dehai Zhao, Zhenchang Xing, Chunyang Chen, Xiwei Xu, Liming Zhu, Guoqiang
Li, and Jinshui Wang. 2020. Seenomaly: Vision-Based Linting of GUI Animation
Effects Against Design-Don’t Guidelines. In 42nd International Conference on
Software Engineering (ICSE ’20). ACM, New York, NY, 12 pages. https://doi.org/
10.1145/3377811.3380411

[54] Shuyu Zheng, Ziniu Hu, and Yun Ma. 2019. FaceOff: Assisting the Manifestation
Design of Web Graphical User Interface. In Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining. 774–777.

[55] Xinyu Zhou, Cong Yao, He Wen, Yuzhi Wang, Shuchang Zhou, Weiran He,
and Jiajun Liang. 2017. EAST: an efficient and accurate scene text detector. In
Proceedings of the IEEE conference on Computer Vision and Pattern Recognition.
5551–5560.

https://laptrinhx.com/ui2code-how-to-fine-tune-background-and-foreground-analysis-2293652041/
https://laptrinhx.com/ui2code-how-to-fine-tune-background-and-foreground-analysis-2293652041/
https://doi.org/10.1145/3377811.3380411
https://doi.org/10.1145/3377811.3380411

	Abstract
	1 Introduction
	2 Problem Scope and Solution Space
	2.1 Problem Scope
	2.2 Solution Space

	3 Empirical Study
	3.1 Research Questions
	3.2 Experiment Setup
	3.3 Results - RQ1 Performance
	3.4 Results - RQ2 Sensitivity
	3.5 Results - RQ3 Text Detection

	4 A Novel Approach
	4.1 Approach Design
	4.2 Evaluation

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

