Unblind Your Apps: Predicting Natural-Language Labels for
Mobile GUI Components by Deep Learning

Jieshan Chen
Jieshan.Chen@anu.edu.au
Australian National University

Chunyang Chen"
Chunyang.Chen@monash.edu
Monash University

Zhenchang Xing"
Zhenchang Xing@anu.edu.au
Australian National University

Australia Australia Australia
Xiwei Xu Liming Zhu* Guogiang Li*
Xiwei.Xu@data61.csiro.au Liming.Zhu@data61.csiro.au Li.G@sjtu.edu.cn
Data61, CSIRO Data61, CSIRO Shanghai Jiao Tong University
Australia Australia China
Jinshui Wang"

ymkscom@gmail.com
Fujian University of Technology
China

ABSTRACT

According to the World Health Organization(WHO), it is estimated
that approximately 1.3 billion people live with some forms of vision
impairment globally, of whom 36 million are blind. Due to their
disability, engaging these minority into the society is a challenging
problem. The recent rise of smart mobile phones provides a new
solution by enabling blind users’ convenient access to the infor-
mation and service for understanding the world. Users with vision
impairment can adopt the screen reader embedded in the mobile
operating systems to read the content of each screen within the
app, and use gestures to interact with the phone. However, the
prerequisite of using screen readers is that developers have to add
natural-language labels to the image-based components when they
are developing the app. Unfortunately, more than 77% apps have
issues of missing labels, according to our analysis of 10,408 An-
droid apps. Most of these issues are caused by developers’ lack of
awareness and knowledge in considering the minority. And even if
developers want to add the labels to UI components, they may not
come up with concise and clear description as most of them are of
no visual issues. To overcome these challenges, we develop a deep-
learning based model, called LABELDROID, to automatically predict
the labels of image-based buttons by learning from large-scale com-
mercial apps in Google Play. The experimental results show that

“Corresponding author.
* Also with Data61, CSIRO.
* Also with University of New South Wales.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE °20, May 23-29, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7121-6/20/05....$15.00
https://doi.org/10.1145/3377811.3380327

our model can make accurate predictions and the generated labels
are of higher quality than that from real Android developers.

CCS CONCEPTS

« Human-centered computing — Accessibility systems and
tools; Empirical studies in accessibility; « Software and its engi-
neering — Software usability.

KEYWORDS

Accessibility, neural networks, user interface, image-based buttons,
content description

ACM Reference Format:

Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei Xu, Liming Zhu,
Guogqiang Li, and Jinshui Wang. 2020. Unblind Your Apps: Predicting Natural-
Language Labels for Mobile GUI Components by Deep Learning. In 42nd
International Conference on Software Engineering (ICSE °20), May 23-29,
2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3377811.3380327

1 INTRODUCTION

Given millions of mobile apps in Google Play [11] and App store [8],
the smart phones are playing increasingly important roles in daily
life. They are conveniently used to access a wide variety of services
such as reading, shopping, chatting, etc. Unfortunately, many apps
remain difficult or impossible to access for people with disabili-
ties. For example, a well-designed user interface (UI) in Figure 1
often has elements that don’t require an explicit label to indicate
their purpose to the user. A checkbox next to an item in a task
list application has a fairly obvious purpose for normal users, as
does a trash can in a file manager application. However, to users
with vision impairment, especially for the blind, other UI cues are
needed. According to the World Health Organization(WHO) [4], it
is estimated that approximately 1.3 billion people live with some
form of vision impairment globally, of whom 36 million are blind.
Compared with the normal users, they may be more eager to use
the mobile apps to enrich their lives, as they need those apps to

https://doi.org/10.1145/3377811.3380327
https://doi.org/10.1145/3377811.3380327
https://doi.org/10.1145/3377811.3380327

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Navigateup - 3l - More options

_ - ~ Play
Add to favorites . | cumaae =

Add to queue |
Download "|:

- Share

Figure 1: Example of UI components and labels.

represent their eyes. Ensuring full access to the wealth of infor-
mation and services provided by mobile apps is a matter of social
justice [55].

Fortunately, the mobile platforms have begun to support app
accessibility by screen readers (e.g., TalkBack in Android [12] and
VoiceOver in IOS [20]) for users with vision impairment to interact
with apps. Once developers add labels to Ul elements in their apps,
the UI can be read out loud to the user by those screen readers. For
example, when browsing the screen in Figure 1 by screen reader,
users will hear the clickable options such as “navigate up”, “play”,
“add to queue”, etc. for interaction. The screen readers also allow
users to explore the view using gestures, while also audibly de-
scribing what’s on the screen. This is useful for people with vision
impairments who cannot see the screen well enough to understand
what is there, or select what they need to.

Despite the usefulness of screen readers for accessibility, there
is a prerequisite for them functioning well, i.e., the existence of
labels for the UI components within the apps. In detail, the Android
Accessibility Developer Checklist guides developers to “provide con-
tent descriptions for UI components that do not have visible text" [6].
Without such content descriptionsl, the Android TalkBack screen
reader cannot provide meaningful feedback to a user to interact
with the app.

Although individual apps can improve their accessibility in many
ways, the most fundamental principle is adhering to platform acces-
sibility guidelines [6]. However, according to our empirical study in
Section 3, more than 77% apps out of 10,408 apps miss such labels
for the image-based buttons, resulting in the blind’s inaccessibility
to the apps. Considering that most app designers and developers
are of no vision issues, they may lack awareness or knowledge
of those guidelines targeting for blind users. To assist developers
with spotting those accessibility issues, many practical tools are
developed such as Android Lint [1], Accessibility Scanner [5], and
other accessibility testing frameworks [10, 18]. However, none of
these tools can help fix the label-missing issues. Even if developers
or designers can locate these issues, they may still not be aware
how to add concise, easy-to-understand descriptions to the GUI
components for users with vision impairment. For example, many

!“labels” and “content description” refer to the same meaning and we use them inter-
changeably in this paper

Jieshan Chen, Chunyang Chen, Zhenchang Xing, et al.

My Library

activity_main.xml
<ImageView

android:id="@+id/mainAdd”

android:padding="8dp”

android: layout_width="40dp”
android: layout_height="40dp”
android:src="@drawable/ic_add”
No saved playlists

string.xml

android:contentDescription="@string/add_button”/> }

<string name="add button”>Add playlist{/string>

ii # drawable/ic_add.png

Figure 2: Source code for setting up labels for “add playlist”
button (which is indeed a clickable ImageView).

developers may add label “add” to the button in Figure 2 rather
than “add playlist” which is more informative about the action.
To overcome those challenges, we develop a deep learning based
model to automatically predict the content description. Note that
we only target at the image-based buttons in this work as these
buttons are important proxies for users to interact with apps, and
cannot be read directly by the screen reader without labels. Given
the UI image-based components, our model can understand its
semantics based on the collected big data, and return the possible
label to components missing content descriptions. We believe that
it can not only assist developers in efficiently filling in the content
description of UI components when developing the app, but also
enable users with vision impairment to access to mobile apps.
Inspired by image captioning, we adopt the CNN and transformer
encoder decoder for predicting the labels based on the large-scale
dataset. The experiments show that our LABELDROID can achieve
60.7% exact match and 0.654 ROUGE-L score which outperforms
both state-of-the-art baselines. We also demonstrate that the pre-
dictions from our model is of higher quality than that from junior
Android developers. The experimental results and feedbacks from
these developers confirm the effectiveness of our LABELDROID.
Our contributions can be summarized as follow:

e To our best knowledge, this is the first work to automati-
cally predict the label of UI components for supporting app
accessibility. We hope this work can invoke the community
attention in maintaining the accessibility of mobile apps.

e We carry out a motivational empirical study for investigating
how well the current apps support the accessibility for users
with vision impairment.

e We construct a large-scale dataset of high-quality content
descriptions for existing Ul components. We release the
dataset? for enabling other researchers’ future research.

2 ANDROID ACCESSIBILITY BACKGROUND

2.1 Content Description of UI component

Android Ul is composed of many different components to achieve
the interaction between the app and the users. For each component
of Android UI, there is an attribute called android: contentDescription

Zhttps://github.com/chenjshnn/LabelDroid

https://github.com/chenjshnn/LabelDroid

Unblind Your Apps: Predicting Natural-Language Labels for Mobile GUI Components by Deep Learning

Figure 3: Examples of image-based buttons. I) clickable
ImageView; (2)(3) ImageButton.

in which the natural-language string can be added by the develop-
ers for illustrating the functionality of this component. This need
is parallel to the need for alt-text for images on the web. To add
the label “add playlist” to the button in Figure 2, developers usually
add a reference to the android:contentDescription in the layout xml
file, and that reference is referred to the resource file string.xml
which saves all text used in the application. Note that the content
description will not be displayed in the screen, but can only be read
by the screen reader.

2.2 Screen Reader

According to the screen reader user survey by WebAIM in 2017 [2],
90.9% of respondents who were blind or visually impaired used
screen readers on a smart phone. As the two largest organisations
that facilitate mobile technology and the app market, Google and
Apple provide the screen reader (TalkBack in Android [12] and
VoiceOver in IOS [20]) for users with vision impairment to access to
the mobile apps. As VoiceOver is similar to TalkBack and this work
studies Android apps, we only introduce the TalkBack. TalkBack is
an accessibility service for Android phones and tablets which helps
blind and vision-impaired users interact with their devices more
easily. It is a system application and comes pre-installed on most
Android devices. By using TalkBack, a user can use gestures, such
as swiping left to right, on the screen to traverse the components
shown on the screen. When one component is in focus, there is an
audible description given by reading text or the content description.
When you move your finger around the screen, TalkBack reacts,
reading out blocks of text or telling you when you’ve found a button.
Apart from reading the screen, TalkBack also allows you to interact
with the mobile apps with different gestures. For example, users
can quickly return to the home page by drawing lines from bottom
to top and then from right to left using fingers without the need
to locate the home button. TalkBack also provides local and global
context menus, which respectively enable users to define the type
of next focused items (e.g., characters, headings or links) and to
change global setting.

2.3 Android Classes of Image-Based Buttons

There are many different types of UI components [3] when develop-
ers are developing the Ul such as TextView, ImageView, EditText,
Button, etc. According to our observation, the image-based nature
of the classes of buttons make them necessary to be added with
natural-language annotations for two reasons. First, these compo-
nents can be clicked i.e., as important proxies for interaction than
static components like TextView with users. Second, the screen read-
ers cannot directly read the image to natural language. In order to

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Table 1: Statistics of label missing situation

Element #Miss/#Apps #Miss/#Screens #Miss/#Elements

ImageButton 4,843/7,814 (61.98%) 98,427/219,302(44.88%) 241,236/423,172(57.01%)
Clickable Image 5,497/7,421 (74.07%) 92,491/139,831(66.14%) 305,012/397,790(76.68%)
Total 8,054/10,408 (77.38%) 169,149/278,234(60.79%) 546,248/820,962(66.54%)

properly label an image-based button such that it interacts properly
with screen readers, alternative text descriptions must be added in
the button’s content description field. Figure 3 shows two kinds of
image-based buttons.

2.3.1 Clickable Images. Images can be rendered in an app using
the Android API class android.widget.ImageView[14]. If the click-
able property is set to true, the image functions as a button (D
in Figure 3). We call such components Clickable Images. Different
from normal images of which the clickable property is set to false,
all Clickable Images are non-decorative, and a null string label can
be regarded as a missing label accessibility barrier.

2.3.2 Image Button. Image Buttons are implemented by the An-
droid API class android.widget . ImageButton [13]. This is a sub-class
of the Clickable Image’s ImageView class. As its name suggests, Im-
age Buttons are buttons that visually present an image rather than

text (@@ in Figure 3).

3 MOTIVATIONAL MINING STUDY

While the main focus and contribution of this work is developing a
model for predicting content description of image-based buttons,
we still carry out an empirical study to understand whether the
development team adds labels to the image-based buttons during
their app development. The current status of image-based button
labeling is also the motivation of this study. But note that this mo-
tivational study just aims to provide an initial analysis towards
developers supporting users with vision impairment, and a more
comprehensive empirical study would be needed to deeply under-
stand it.

3.1 Data Collection

To investigate how well the apps support the users with vision
impairment, we randomly crawl 19,127 apps from Google Play [11],
belonging to 25 categories with the installation number ranging
from 1K to 100M.

We adopt the app explorer [32] to automatically explore differ-
ent screens in the app by various actions (e.g., click, edit, scroll).
During the exploration, we take the screenshot of the app GUI, and
also dump the run-time front-end code which identifies each ele-
ment’s type (e.g., TextView, Button), coordinates in the screenshots,
content description, and other metadata. Note that our explorer
can only successfully collect GUIs in 15,087 apps. After remov-
ing all duplicates by checking the screenshots, we finally collect
394,489 GUI screenshots from 15,087 apps. Within the collected
data, 278,234(70.53%) screenshots from 10,408 apps contain image-
based buttons including clickable images and image buttons, which
forms the dataset we analyse in this study.

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Distribution of the category of applications with different missing rate

o

[0-20%
20-40%
5 250 40-60%
[:2:::2)
2]

B

R

be%e?

0%

%

o3¢

RS

%3¢

60-80%
80-100%

S

X5

8%

K&
%

R

ot

ot
5

poos:

28

ot

%
%

R

Number of App

R

2

S

R

%

3%

NZ

KRB

GAME
PRODUCTIVITY
FINANCE
SPORTS

ENTERTAINMENT
commnication |IEITHEESS
sHoPPING

2
s
>
2
=
2
g

NEWS_AND_MAGAZINES
PERSONALIZATION
TRAVEL_AND_LOCAL
HEALTH_AND_FITNESS
LIBRARIES_AND_DEMO

Figure 4: The distribution of the category of applications
with different rate of image-based buttons missing content
description

3.2 Current Status of Image-Based Button
Labeling in Android Apps

Table 1 shows that 4,843 out of 7,814 apps (61.98%) have image but-
tons without labels, and 5,497 out of 7,421 apps (74.07%) have click-
able images without labels. Among all 278,234 screens, 169,149(60.79%)
of them including 57.01% image buttons and 76.68% clickable im-
ages within these apps have at least one element without explicit
labels. It means that more than half of image-based buttons have no
labels. These statistics confirm the severity of the button labeling
issues which may significantly hinder the app accessibility to users
with vision impairment.

We then further analyze the button labeling issues for different
categories of mobile apps. As seen in Figure 4, the button labeling
issues exist widely across different app categories, but some cate-
gories have higher percentage of label missing buttons. For example,
72% apps in Personalization, 71.6% apps in Game, and 71.8% apps
in Photography have more than 80% image-based button without
labels. Personalization and Photography apps are mostly about up-
dating the screen background, the alignment of app icons, viewing
the pictures which are mainly for visual comfort. The Game apps
always need both the screen viewing and the instantaneous interac-
tions which are rather challenging for visual-impaired users. That
is why developers rarely consider to add labels to image-based but-
tons within these apps, although these minority users deserve the
right for the entertainment. In contrast, about 40% apps in Finance,
Business, Transportation, Productivity category have relatively more
complete labels for image-based buttons with only less than 20%
label missing. The reason accounting for that phenomenon may be
that the extensive usage of these apps within blind users invokes
developers’ attention, though further improvement is needed.

To explore if the popular apps have better performance in adding
labels to image-based buttons, we draw a box plot of label missing
rate for apps with different installation numbers in Figure 5. There
are 11 different ranges of installation number according to the
statistics in Google Play. However, out of our expectation, many
buttons in popular apps still lack the labels. Such issues for popular
apps may post more negatively influence as those apps have a
larger group of audience. We also conduct a Spearman rank-order
correlation test [67] between the app installation number and the

Jieshan Chen, Chunyang Chen, Zhenchang Xing, et al.

=
o

o o
o ©

Missing Rate
o
S

o
[N]

TUY LT T

1K 5K 10K 50K 100K 500K 1M 5M 10M 50M 100M
Installation Number

o

o
l
l
H

Figure 5: Box-plot for missing rate distribution of all apps
with different installation numbers.

label-missing rate. The correlation coefficient is 0.046 showing
a very weak relationship between these two factors. This result
further proves that the accessibility issue is a common problem
regardless of the popularity of applications. Therefore, it is worth
developing a new method to solve this problem.

Summary: By analyzing 10,408 existing apps crawled from
Google Play, we find that more than 77% of them have at least
one image-based button missing labels. Such phenomenon is
further exacerbated for apps categories highly related to pic-
tures such as personalization, game, photography . However,
out of our expectation, the popular apps do not behave better
in accessibility than that of unpopular ones. These findings con-
firm the severity of label missing issues, and motivate our model
development for automatic predicting the labels for image-based
buttons.

4 APPROACH

Rendering a Ul widget into its corresponding content description
is the typical task of image captioning. The general process of our
approach is to firstly extract image features using CNN [56], and
encode this extracted informative features into a tensor using an
encoder module. Based on the encoded information, the decoder
module generates outputs (which is a sequence of words) condi-
tioned on this tensor and previous outputs. Different from the tra-
ditional image captioning methods based on CNN and RNN model
or neural translation based on RNN encoder-decoder [33, 34, 45],
we adopt the Transformer model [68] in this work. The overview
of our approach can be seen in Figure 6.

4.1 Visual Feature Extraction

To extract the visual features from the input button image, we
adopt the convolutional neural network [47] which is widely used
in software engineering domain [30, 35, 79]. CNN-based model can
automatically learn latent features from a large image database,
which has outperformed hand-crafted features in many computer
vision tasks [53, 65]. CNN mainly contains two kinds of layers, i.e.,
convolutional layers and pooling layers.

Convolutional Layer. A Convolution layer performs a linear
transformation of the input vector to extract and compress the
salient information of input. Normally, an image is comprised of a
HXW xC matrix where H, W, C represent height, width, channel of

Unblind Your Apps: Predicting Natural-Language Labels for Mobile GUI Components by Deep Learning

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

I Current Output | <drawer>
1x1conv, 2048 4 4 t P
3x 5 50 Nx [Feed ‘ ‘ Feed ‘ [Feed t
| 3dowsz | Transformer ({forward] ({furword | \(forvard) Output Probabilities
1x1conv, 512 Encoder ! t : t
Multi-head Self-attention Layer
Module 2 Linear + Softmax ‘
1x1conv, 1024
t t t t
Bx 3x3 conv. 256 Positional Encoding - =D s t t ?
+ 4 t Nx Feed ‘ ‘ Feed ‘ ‘ Feed
Ix1conv. 256 == == == x5 forward | | forward | | forward Transformer
ow 0 W Row 1K " Row iy 1 ' Decoder
1x1conv, 512 . Module
‘:‘ 49x512 } Cross Attention Layer ‘
4x 3x3 conv. 128 [t 7] 4 4 4
Ix1conv, 128 t Multi-head Self-attention Layer
Image 49%2048 1 1 T -
1x1conv, 256 Feature
‘ ‘ Extractor Reshape # - D« D« P « Positional Encoding
3x 3x3 conv. 64 [l ‘ 7x7x2048 Iy + Y
y — — —
IxTconv. 64 t t t t
- : | CNN ‘ Word Embedding ‘
3x3 max pooling. stride 2 + 4 t Y ne-h

Image

7x7 conv, 64, stride 2

224x224x3

Previous Outputs ‘<START> ‘ ‘<open> ‘ ‘<navigation> ‘

Figure 6: Overview of our approach

this image respectively. And each value in this matrix is in the range
of 0 to 255. A convolution operation uses several small trainable
matrices (called kernels) to slide over the image along the width and
height in a specified stride. Each movement will compute a value
of output at the corresponding position by calculating the sum of
element-wise product of current kernel and current sub-matrix of
the image. One kernel performs one kind of feature extractor, and
computes one layer of the final feature map. For example, for an
image I € RTWC we feed it in a convolutional layer with stride one
and k kernels, the output will have the dimension of H' x W’ X k,
where H” and W’ are the times of movement along height & width.

Pooling Layer. A pooling layer is used to down-sample the cur-
rent input size to mitigate the computational complexity required
to process the input by extracting dominant features, which are
invariant to position and rotation, of input. It uses a fixed length
of window to slide the image with a fixed stride and summarises
current scanned sub-region to one value. Normally, the stride is
same as the window’s size so that the model could filter meaning-
less features while maintaining salient ones. There are many kinds
of strategy to summarise sub-region. For example, for max-pooling,
it takes the maximum value in the sub-region to summarise current
patch. For average pooling, it takes the average mean of all values
in current patch as the output value.

4.2 Visual Semantic Encoding

To further encode the visual features extracted from CNN, we first
embed them using a fully-connected layer and then adopt the en-
coder based on the Transformer model which was first introduced
for the machine translation task. We select the Transformer model
as our encoder and decoder due to two reasons. First, it overcomes
the challenge of long-term dependencies [49], since it concentrates
on all relationships between any two input vectors. Second, it sup-
ports parallel learning because it is not a sequential learning and all
latent vectors could be computed at the same time, resulting in the

shorter training time than RNN model. Within the encoder, there
are two kinds of sublayers: the multi-head self-attention layer and
the position-wise feed forward layer.

Multi-head Self-attention Layer Given a sequence of input
vectors X = [x1,x2, ..., xn]T(X € R”Xdembed), a self-attention layer
first computes a set of query (Q), key (K), value (V) vectors (Q/K €
R4Xn 7 e R4oXMy and then calculates the scores for each posi-
tion vector with vectors at all positions. Note that image-based
buttons are artificial images rendered by the compiler with the
specified order i.e., from left to right, from top to bottom. There-
fore, we also consider the sequential spatial information to capture
the dependency between the top-left and bottom-right features ex-
tracted by the CNN model. For position i, the scores are computed
by taking the dot product of query vector ¢; with all key vectors
ki(j €1,2,..n).

In order to get a more stable gradient, the scores are then divided
by M After that, we apply a softmax operation to normalize all
scores so that they are added up to 1. The final output of the self-
attention layer is to multiply each value vector to its corresponding
softmax score and then sums it up. The matrix formula of this
procedure is:

Self_Attention(Q,K,V) = softmax(Q—KT)V (1)
Vi

where Q = WeXT, K = WexT, v = WeXT and Wy € R dembed,
W e RékXdembed ' We ¢ RdoXdembed gre the trainable weight met-

T
rics. The softmax(%) can be regarded as how each feature (Q)
k

of the feature sequence from CNN model is influenced by all other
features in the sequence (K). And the result is the weight to all
features V.

The multi-head self-attention layer uses multiple sets of query,
key, value vectors and computes multiple outputs. It allows the

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

model to learn different representation sub-spaces. We then concate-
nate all the outputs and multiply it with matrix W¢ € Rmoderxhdo
(where h is the number of heads) to summarise the information of
multi-head attention.

Feed Forward Layer Then a position-wise feed forward layer
is applied to each position. The feed-forward layers have the same
structure of two fully connected layers, but each layer is trained
separately. The feed forward layer is represented as:

Feed_forward(Z) = Wy x (W x Z +b%) + b (2)

where W € RIfr*dmodel e e Rdmoderdrs p¢ e RIS be e
Rdmodel are the trainable parameters of two fully connected layers.

Besides, for each sub-layer, Transformer model applies resid-
ual connection [47] and layer normalization [23]. The equation
is Layer Norm(x + Sublayer(x)), where x and Sublayer(x) are the
input and output of current sub-layer. For input embedding, Trans-
former model also applies position encoding to encode the relative
position of the sequence.

4.3 Content Description Generation

As mentioned in Section 4.2, the encoder module is comprised of
N stacks of layers and each layer consists of a multi-head self-
attention sub-layer and a feed-forward layer. Similar to the encoder,
the decoder module is also of M-stack layers but with two main
differences. First, an additional cross-attention layer is inserted into
the two sub-layers. It takes the output of top-layer of the encoder
module to compute query and key vectors so that it can help capture
the relationship between inputs and targets. Second, it is masked
to the right in order to prevent attending future positions.

Cross-attention Layer. Given current time ¢, max length of
content description L, previous outputs §9(e RdmoderXL) from self-
attention sub-layer and output Z€(€ R4modelX™) from encoder mod-
ule, the cross-attention sub-layer can be formulated as:

Qe (Ke)T
Vi
where Q¢ = Wfz, K¢ = Wiz, vd = wisd, wd e RdixXdmodel,
W]f € R¥%Xdmodel and W € R4*dmodel Note that we mask Sl‘f =0

(for k > t) since we currently do not know future values.

Final Projection. After that, we apply a linear softmax opera-
tion to the output of the top-layer of the decoder module to predict

Cross_Attention(Q¢, K¢, V) = softmax(wé o 3)

next word. Given output D € RémodetXL from decoder module, we
have Y’ = Softmax(D+ W2 +b?) and take the t,j, output of Y’ as the
next predicted word. During training, all words can be computed at
the same time by masking Sl‘j = 0 (for k > t) with different t. Note
that while training, we compute the prediction based on the ground
truth labels, i.e, for time t, the predicted word y; is based on the
ground truth sub-sequence [yo, y1, .., Yz—1]. In comparison, in the
period of inference (validation/test), we compute words one by one,
based on previous predicted words, i.e., for time t, the predicted
word y; is based on the ground truth sub-sequence [y, y7, ... y;_; |-

Loss Function. We adopt Kullback-Leibler (KL) divergence loss [54]

(also called as relative entropy loss) to train our model. It is a natural
method to measure the difference between the generated proba-
bility distribution q and the reference probability distribution p.
Note that there is no difference between cross entropy loss and

Jieshan Chen, Chunyang Chen, Zhenchang Xing, et al.

Q

Ho

5

CHEE

EEB & O

BEBu o

T
X

=
<

.
!

r_

Figure 7: Example of our dataset

KL divergence since Dy;(plq) = H(p,q) — H(p), where H(p) is

constant.

5 IMPLEMENTATION

To implement our model, we further extract the data analysed in Sec-
tion 3 by filtering out the noisy data for constructing a large-scale
pairs of image-based buttons and corresponding content descrip-
tions for training and testing the model. Then, we introduce the
detailed parameters and training process of our model.

5.1 Data Preprocessing

For each screenshot collected by our tool, we also dump the runtime
XML which includes the position and type of all GUI components
within the screenshot. To obtain all image-based buttons, we crop
the GUI screenshot by parsing the coordinates in the XML file.
However, the same GUI may be visited many times, and different
GUIs within one app may share the same components. For example,
a menu icon may appear in the top of all GUI screenshots within
the app. To remove duplicates, we first remove all repeated GUI
screenshots by checking if their corresponding XML files are the
same. After that, we further remove duplicate image-based buttons
if they are exactly same by the pixel value. But duplicate buttons
may not be 100% same in pixels, so we further remove duplicate
buttons if their coordinate bounds and labels are the same because
some buttons would appear in a fixed position but with a different
background within the same app. For example, for the “back” button
at the top-left position in Figure 1, once user navigates to another
news page, the background of this button will change while the
functionality remains.

Apart from the duplicate image-based buttons, we also remove
low-quality labels to ensure the quality of our training model. We
manually observe 500 randomly selected image-based buttons from
Section 3, and summarise three types of meaningless labels. First,
the labels of some image-based buttons contain the class of ele-
ments such as “image button”, “button with image”, etc. Second,
the labels contain the app’s name. For example, the label of all
buttons in the app RINGTONE MAKER is “ringtone maker”. Third,
some labels may be some unfinished placeholders such as “test”,
“content description”, “untitled”, “none”. We write the rules to filter
out all of them, and the full list of meaningless labels can be found
in our website.

After removing the non-informative labels, we translate all non-
English labels of image-based buttons to English by adopting the
Google Translate APL For each label, we add < start >, < end >

https://github.com/chenjshnn/LabelDroid

Unblind Your Apps: Predicting Natural-Language Labels for Mobile GUI Components by Deep Learning

Table 2: Details of our accessibility dataset.

#App #Screenshot #Element

Train 6,175 10,566 15,595
Validation 714 1,204 1,759
Test 705 1,375 1,879
Total 7,594 13,145 19,233

tokens to the start and the end of the sequence. We also replace
the low-frequency words with an < unk > token. To enable the
mini-batch training, we need to add a < pad > token to pad the
word sequence of labels into a fixed length. Note that the maximum
number of words for one label is 15 in this work.

After the data cleaning, we finally collect totally 19,233 pairs of
image-based buttons and content descriptions from 7,594 apps. Note
that the app number is smaller than that in Section 3 as the apps with
no or uninformative labels are removed. We split cleaned dataset
into training, validation® and testing set. For each app category,
we randomly select 80% apps for training, 10% for validation and
the rest 10% for testing. Table 2 shows that, there are 15,595 image-
based buttons from 6,175 apps as the training set, 1,759 buttons
from 714 apps as validation set and 1,879 buttons from 705 apps as
testing set. The dataset can also be downloaded from our site.

5.2 Model Implementation

We use ResNet-101 architecture [47] pretrained on ImageNet dataset [41]

as our CNN module. As you can see in the leftmost of Figure 6, it
consists of a convolution layer, a max pooling layer, four types of
blocks with different numbers of block (denoted in different colors).
Each type of block is comprised of three convolutional layers with
different settings and implements an identity shortcut connection
which is the core idea of ResNet. Instead of approximating the tar-
get output of current block, it approximates the residual between
current input and target output, and then the target output can be
computed by adding the predicted residual and the original input
vector. This technique not only simplifies the training task, but also
reduces the number of filters. In our model, we remove the last
global average pooling layer of ResNet-101 to compute a sequence
of input for the consequent encoder-decoder model.

For transformer encoder-decoder, we take N = 3, d,ppeqd = dic =
do = dmoder = 512, dpy = 2048, h = 8. We train the CNN and the
encoder-decoder model in an end-to-end manner using KL diver-
gence loss [54]. We use Adam optimizer [52] with 1 = 0.9, f2 =
0.98 and € = 107° and change the learning rate according to the

formula learning_rate = d_%> x min(step_num=%3, step_num x

model
warmup_steps~ 1) to train the model, where step_num is the cur-

rent iteration number of training batch and the first warm_up
training step is used to accelerate training process by increasing
the learning rate at the early stage of training. Our implementation
uses PyTorch [17] on a machine with Intel i7-7800X CPU, 64G RAM
and NVIDIA GeForce GTX 1080 Ti GPU.

3for tuning the hyperparameters and preventing the overfitting

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

6 EVALUATION

We evaluate our LABELDROID in three aspects, i.e., accuracy with
automated testing, generality and usefulness with user study.

6.1 Evaluation Metric

To evaluate the performance of our model, we adopt five widely-
used evaluation metrics including exact match, BLEU [62], ME-
TEOR [26], ROUGE [57], CIDEr [69] inspired by related works
about image captioning. The first metric we use is exact match
rate, i.e., the percentage of testing pairs whose predicted content
description exactly matches the ground truth. Exact match is a
binary metric, i.e., 0 if any difference, otherwise 1. It cannot tell the
extent to which a generated content description differs from the
ground-truth. For example, the ground truth content description
may contain 4 words, but no matter one or 4 differences between
the prediction and ground truth, exact match will regard them as
0. Therefore, we also adopt other metrics. BLEU is an automatic
evaluation metric widely used in machine translation studies. It
calculates the similarity of machine-generated translations and
human-created reference translations (i.e., ground truth). BLEU
is defined as the product of n-gram precision and brevity penalty.
As most content descriptions for image-based buttons are short,
we measure BLEU value by setting n as 1, 2, 3, 4, represented as
BLEU@1, BLEU@2, BLEU@3, BLEU@4.

METEOR [26] (Metric for Evaluation of Translation with Explicit
ORdering) is another metric used for machine translation evalua-
tion. It is proposed to fix some disadvantages of BLEU which ignores
the existence of synonyms and recall ratio. ROUGE (Recall-Oriented
Understudy for Gisting Evaluation) [57] is a set of metric based on
recall rate, and we use ROUGE-L, which calculates the similarity
between predicted sentence and reference based on the longest
common subsequence (short for LCS). CIDEr (Consensus-Based
Image Description Evaluation) [69] uses term frequency inverse
document frequency (tf-idf) [64] to calculate the weights in refer-
ence sentence s;; for different n-gram wy because it is intuitive to
believe that a rare n-grams would contain more information than a
common one. We use CIDEr-D, which additionally implements a
length-based gaussian penalty and is more robust to gaming. We
then divide CIDEr-D by 10 to normalize the score into the range
between 0 and 1. We still refer CIDEr-D/10 to CIDEr for brevity.

All of these metrics give a real value with range [0,1] and are
usually expressed as a percentage. The higher the metric score, the
more similar the machine-generated content description is to the
ground truth. If the predicted results exactly match the ground
truth, the score of these metrics is 1 (100%). We compute these
metrics using coco-caption code [39].

6.2 Baselines

We set up two state-of-the-art methods which are widely used for
image captioning as the baselines to compare with our content
description generation method. The first baseline is to adopt the
CNN model to encode the visual features as the encoder and adopt a
LSTM (long-short term memory unit) as the decoder for generating
the content description [49, 70]. The second baseline also adopt the
encoder-decoder framework. Although it adopts the CNN model as

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Table 3: Results of accuracy evaluation

Jieshan Chen, Chunyang Chen, Zhenchang Xing, et al.

Method Exact match | BLEU@1 | BLEU@2 | BLEU@3 | BLEU@4 | METEOR | ROUGE-L | CIDEr
CNN+LSTM 58.4% 0.621 0.600 0.498 0.434 0.380 0.624 0.287
CNN+CNN 57.4% 0.618 0.596 0.506 0.473 0.374 0.617 0.284
LaBeLDRoOID 60.7% 0.651 0.626 0.523 0.464 0.399 0.654 0.302

the encoder, but uses another CNN model for generating the out- ol

put [22] as the decoder. The output projection layer in the last CNN

decoder performs a linear transformation and softmax, mapping M

the output vector to the dimension of vocabulary size and getting g 1250

word probabilities. Both methods take the same CNN encoder as 2 1000/

ours, and also the same datasets for training, validation and testing. g 750!

We denote two baselines as CNN+LSTM, CNN+CNN for brevity. 2 ool = Eféﬁ;"’m”

""" METEOR
6.3 Accuracy Evaluation = |

We use randomly selected 10% apps including 1,879 image-based
buttons as the test data for accuracy evaluation. None of the test
data appears in the model training.

6.3.1 Overall Performance. Table 3 shows the overall performance
of all methods. The performance of two baselines are very similar
and they achieve 58.4% and 57.4% exactly match rate respectively.
But CNN+LSTM model is slightly higher in other metrics. In con-
trast with baselines, the generated labels from our LABELDRoID for
60.7% image-based buttons exactly match the ground truth. And the
average BLEU@1, BLEU@2, BLEU@3, BLEU@4, METEOR, ROUGE-
L and CIDEr of our method are 0.651, 0.626, 0.523, 0.464, 0.399, 0.654,
0.302. Compared with the two state-of-the-art baselines, our La-
BELDROID outperforms in all metrics and gains about 2% to 11.3%
increase. We conduct the Mann-Whitney U test [59] between these
three models among all testing metrics. Since we have three infer-
ential statistical tests, we apply the Benjamini & Hochberg (BH)
method [27] to correct p-values. Results show the improvement of
our model is significant in all comparisons (p-value<0.01)*.

To show the generalization of our model, we also calculate the
performance of our model in different app categories as seen in
Figure 8. We find that our model is not sensitive to the app category
i.e., steady performance across different app categories. In addition,
Figure 8 also demonstrates the generalization of our model. Even if
there are very few apps in some categories (e.g., medical, person-
alization, libraries and demo) for training, the performance of our
model is not significantly degraded in these categories.

6.3.2 Qualitative Performance with Baselines. To further explore
why our model behaves better than other baselines, we analyze
the image-buttons which are correctly predicted by our model, but
wrongly predicted by baselines. Some representative examples can
be seen in Table 4 as the qualitative observation of all methods’
performance. In general, our method shows the capacity to generate
different lengths of labels while CNN+LSTM prefers medium length
labels and CNN+CNN tends to generate short labels.

Our model captures the fine-grained information inside the given
image-based button. For example, the CNN+CNN model wrongly
predict “next” for the “back” button (E1), as the difference between

4The detailed p-values are listed in https://github.com/chenjshnn/LabelDroid

orTs

Figure 8: Performance distribution of different app category

“back” and “next” buttons is the arrow direction. It also predicts
“next” for the “cycle repeat model” button (E5), as there is one right-
direction arrow. Similar reasons also lead to mistakes in E2.

Our model is good at generating long-sequence labels due to the
self-attention and cross-attention mechanisms. Such mechanism
can find the relationship between the patch of input image and
the token of output label. For example, our model can predict the
correct labels such as “exchange origin and destination points” (E3),
“open in google maps” (E6). Although CNN+LSTM can generate
correct labels for E4, E5, it does not work well for E3 and E6.

In addition, our model is more robust to the noise than the
baselines. For example, although there is “noisy” background in E7,
our model can still successfully recognize the “watch” label for it.
In contrast, the CNN+LSTM and CNN+CNN are distracted by the
colorful background information with “<unk>” as the output.

6.3.3 Common Causes for Generation Errors. We randomly sample
5% of the wrongly generated labels for the image-based buttons.
We manually study the differences between these generated labels
and their ground truth. Our qualitative analysis identifies three
common causes of the generation errors.

(1) Our model makes mistakes due to the characteristics of the
input. Some image-based buttons are very special and it is totally
different from the training data. For example, the E1 in Table 5 is
rather different from the normal social-media sharing button. It
aggregates the icons of whatsapp, twitter, facebook and message
with some rotation and overlap. Some buttons are visually similar
to others but with totally different labels. The “route” button (E2)
in Table 5 includes a right arrow which also frequently appears
in “next” button. (2) Our prediction is an alternative to the ground
truth for certain image-based buttons. For example, the label of E3
is the “menu”, but our model predicts “open navigation drawer”.
Although the prediction is totally different from the ground truth
in term of the words, they convey the same meaning which can

https://github.com/chenjshnn/LabelDroid

Unblind Your Apps: Predicting Natural-Language Labels for Mobile GUI Components by Deep Learning

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Table 4: Examples of wrong predictions in baselines

D E1 E2 E3 E4 E5 E6 E7

wucon | I) | I | 3 D | D | N || - - |||
CNN+LSTM start play < unk > cycle shuffle mode cycle repeat mode color swatch <unk>
CNN+CNN next previous track call cycle repeat mode next open drawer <unk> trip check

exchange origin and

LaBELDROID back Lo B
destination points

previous track

cycle shuffle mode cycle repeat mode open in google maps watch

Table 5: Common causes for generation failure.

D E1 E2 E3 E4

Cause Special case Model error Alternative

Wrong ground truth

an | S) —
Button ' 3 |¥O _NQ) = 2km

e | [

LaBELDROID < unk > next open navigation drawer download

Ground truth share note route menu

story content image

be understood by the blind users. (3) A small amount of ground
truth is not the right ground truth. For example, some developers
annotate the E4 as “story content image” although it is a “download”
button. Although our prediction is different from the ground truth,
we believe that our generated label is more suitable for it. This
observation also indicates the potential of our model in identifying
wrong/uninformative content description for image-based buttons.
We manually allocate the 5% (98) failure cases of our model into
these three reasons. 54 cases account for model errors especially
for special cases, 41 cases are alternatives labels to ground truth,
and the last three cases are right but with a wrong groundtruth. It
shows that the accuracy of our model is highly underestimated.

6.4 Generalization and Usefulness Evaluation

To further confirm the generalization and usefulness of our model,
we randomly select 12 apps in which there are missing labels of
image-based buttons. Therefore, all data of these apps do not appear
in our training/testing data. We would like to see the labeling quality
from both our LABELDRoID and human developers.

6.4.1 Procedures. To ensure the representativeness of test data,
12 apps that we select have at least 1M installations (popular apps
often influence more users), with at least 15 screenshots. These
12 apps belong to 10 categories. We then crop elements from Ul
screenshots and filter out duplicates by comparing the raw pixels
with all previous cropped elements. Finally, we collect 156 missing-
label image-based buttons, i.e., 13 buttons in average for each app.

All buttons are feed to our model for predicting their labels (de-
noted as M). To compare the quality of labels from our LABELDROID
and human annotators, we recruit three PhD students and research
staffs (denoted as A1, A2, A3) from our school to create the content
descriptions for all image-based buttons. All of them have at least
one-year experience in Android app development, so they can be
regarded as junior app developers. Before the experiment, they are
required to read the accessibility guidelines [6, 19] and we demo

045
S
0 4.0 T
(%]
23 =
=
830
o
]
S 25 o
<
2.0 o

Al A2 A3 M

Figure 9: Distribution of app acceptability scores by human
annotators (A1, A2, A3) and the model (M).

them the example labels for some randomly selected image-based
buttons (not in our dataset). During the experiment, they are shown
the target image-based buttons highlighted in the whole UI (similar
to Figure 1), and also the meta data about the app including the app
name, app category, etc. All participants carried out experiments
independently without any discussions with each other.

As there is no ground truth for these buttons, we recruit one
professional developer (evaluator) with prior experience in acces-
sibility service during app development to manually check how
good are the annotators’ comments. Instead of telling if the re-
sult is right or not, we specify a new evaluation metric for human
evaluators called acceptability score according to the acceptability
criterion [46]. Given one predicted content description for the but-
ton, the human evaluator will assign 5-point Likert scale [28, 61])
with 1 being least satisfied and 5 being most satisfied. Each result
from LABELDROID and human annotators will be evaluated by the
evaluator, and the final acceptability score for each app is the aver-
age score of all its image-based buttons. Note that we do not tell
the human evaluator which label is from developers or our model
to avoid potential bias. To guarantee if the human evaluators are
capable and careful during the evaluation, we manually insert 4
cases which contain 2 intentional wrong labels and 2 suitable con-
tent description (not in 156 testing set) which are carefully created
by all authors together. After the experiment, we ask them to give
some informal comments about the experiment, and we also briefly
introduce LABELDROID to developers and the evaluator and get
some feedback from them.

6.4.2 Results. Table 6° summarizes the information of the selected
12 apps and the acceptability scores of the generated labels. The av-
erage acceptability scores for three developers vary much from 3.06
(A1) to 3.62 (A3). But our model achieves 3.97 acceptability score

SDetailed results are at https://github.com/chenjshnn/LabelDroid

https://github.com/chenjshnn/LabelDroid

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Jieshan Chen, Chunyang Chen, Zhenchang Xing, et al.

Table 6: The acceptability score (AS) and the standard deviation for 12 completely unseen apps. * denotes p < 0.05.

ID Package name Category #Installation #Image-based button AS-M AS-A1 AS-A2 AS-A3
1 com.handmark.sportcaster sports 5M - 10M 8 4.63(0.48) 3.13(0.78) 3.75(1.20) 4.38(0.99)
2 com.hola.launcher personalization 100M - 500M 10 4.40(0.92) 3.20(1.08) 3.50(1.75) 3.40(1.56)
3 com.realbyteapps.moneymanagerfree finance 1M - 5M 24 4.29(1.10) 3.42(1.29) 3.75(1.45) 3.83(1.55)
4 com.jiubang.browser communication 5M - 10M 11 4.18(1.34) 3.27(1.21) 3.73(1.54) 3.91(1.38)
5 audio.mp3.music.player media_and_video 5M - 10M 26 4.08(1.24) 2.85(1.06) 2.81(1.62) 3.50(1.62)
6 audio.mp3.mp3player music_and_audio 1M - 5M 16 4.00(1.27) 2.75(1.15) 3.31(1.53) 3.25(1.39)
7 com.locon.housing lifestyle 1M - 5M 10 4.00(0.77) 3.50(1.12) 3.60(1.28) 4.40(0.80)
8 com.gau.go.launcherex.gowidget.weatherwidget ~ weather 50M - 100M 12 3.42(1.66) 2.92(1.38) 3.00(1.78) 3.42(1.80)
9 com.appxy.tinyscanner business 1M - 5M 13 3.85(1.23) 3.31(1.20) 3.08(1.59) 3.38(1.44)
10 com.jobkorea.app business 1M - 5M 15 3.60(1.67) 3.27(1.57) 3.13(1.67) 3.60(1.54)
11 browser4g.fast.internetwebexplorer communication 1M - 5M 4 3.25(1.79) 2.00(0.71) 2.50(1.12) 2.50(1.66)
12 com.rcplus social 1M - 5M 7 3.14(1.55) 2.00(1.20) 2.71(1.58) 3.57(1.29)
AVERAGE 13 3.97°(133) 3.06(1.26) 3.27(1.60) 3.62(1.52)
Table 7: Examples of generalization.

D E1 E2 E3 E4 E5

@~ [soe |

M next song add to favorites open ad previous song clear query

Al change to the next song in playlist add the mp3 as favorite show more details about SVIP paly the former one clean content

A2 play the next song like check play the last song close

A3 next like enter last close

which significantly outperforms three developers by 30.0%, 21.6%,
9.7%. The evaluator rates 51.3% of labels generated from LABEL-
Droip as highly acceptable (5 point), as opposed to 18.59%, 33.33%,
44.23% from three developers. Figure 9 shows that our model be-
haves betters in most apps compared with three human annotators.
These results show that the quality of content description from our
model is higher than that from junior Android app developers. Note
that the evaluator is reliable as both 2 intentional inserted wrong
labels and 2 good labels get 1 and 5 acceptability score as expected.

To understand the significance of the differences between four
kinds of content description, we carry out the Wilcoxon signed-rank
test [74] between the scores of our model and each annotator and
between the scores of any two annotators. It is the non-parametric
version of the paired T-test and widely used to evaluate the differ-
ence between two related paired sample from the same probability
distribution. The test results suggest that the generated labels from
our model are significantly better than that of developers (p-value
< 0.01 for A1, A2, and < 0.05 for A3)°.

For some buttons, the evaluator gives very low acceptability
score to the labels from developers. According to our observation,
we summarise four reasons accounting for those bad cases and
give some examples in Table 7. (1) Some developers are prone to
write long labels for image-based buttons like the developer Al.
Although the long label can fully describe the button (E1, E2), it is
too verbose for blind users especially when there are many image-
based buttons within one page. (2) Some developers give too short
labels which may not be informative enough for users. For example,
A2 and A3 annotate the “add to favorite” button as “like” (E2).
Since this button will trigger an additional action (add this song to
favorite list), “like” could not express this meaning. The same reason

©The p-values are adjusted by Benjamin & Hochberg method [27]. All detailed p-values
are listed in https://github.com/chenjshnn/LabelDroid

applies to A2/A3’s labels for E2 and such short labels do not contain
enough information. (3) Some manual labels may be ambiguous
which may confuse users. For example, A2 and A3 annotate “play
the last song” or “last” to “previous song” button (E4) which may
mislead users that clicking this button will come to the final song
in the playlist. (4) Developers may make mistakes especially when
they are adding content descriptions to many buttons. For example,
A2/A3 use “close” to label a “clear query” buttons (E5). We further
manually check 135 low-quality (acceptability score = 1) labels from
annotators into these four categories. 18 cases are verbose labels, 21
of them are uninformative, six cases are ambiguous which would
confuse users, and the majority, 90 cases are wrong.

We also receive some informal feedback from the developers
and the evaluator. Some developers mention that one image-based
button may have different labels in different context, but they are
not very sure if the created labels from them are suitable or not.
Most of them never consider adding the labels to UI components
during their app development and curious how the screen reader
works for the app. All of them are interested in our LABELDROID
and tell that the automatic generation of content descriptions for
icons will definitely improve the user experience in using the screen
reader. All of these feedbacks indicate their unawareness of app
accessibility and also confirm the value of our tool.

7 RELATED WORK

Mobile devices are ubiquitous, and mobile apps are widely used
for different tasks in people’s daily life. Consequently, there are
many research works for ensuring the quality of mobile apps [29,
44, 48]. Most of them are investigating the apps’ functional and
non-functional properties like compatibility [73], performance [58,
81], energy-efficiency [24, 25], GUI design [31, 36], GUI animation
linting [80], localization [72] and privacy and security [37, 38, 40,

https://github.com/chenjshnn/LabelDroid

Unblind Your Apps: Predicting Natural-Language Labels for Mobile GUI Components by Deep Learning

43, 76]. However, few of them are studying the accessibility issues,
especially for users with vision impairment which is focused in our
work.

7.1 App Accessibility Guideline

Google and Apple are the primary organizations that facilitate
mobile technology and the app marketplace by Android and I0S
platforms. With the awareness of the need to create more accessible
apps, both of them have released developer and designer guidelines
for accessibility [6, 15] which include not only the accessibility
design principles, but also the documents for using assistive tech-
nologies embedding in the operating system [15], and testing tools
or suits for ensuring the app accessibility. The World Wide Web
Consortium (W3C) has released their web accessibility guideline
long time ago [21] And now they are working towards adapting
their web accessibility guideline [21] by adding mobile character-
istics into mobile platforms. Although it is highly encouraged to
follow these guidelines, they are often ignored by developers. Differ-
ent from these guidelines, our work is specific to users with vision
impairment and predicts the label during the developing process
without requiring developers to fully understand long guidelines.

7.2 App Accessibility Studies for Blind Users

Many works in Human-Computer Interaction area have explored
the accessibility issues of small-scale mobile apps [63, 75] in differ-
ent categories such as in health [71], smart cities [60] and govern-
ment engagement [51]. Although they explore different accessibility
issues, the lack of descriptions for image-based components has
been commonly explicitly noted as a significant problem in these
works. Park et al [63] rated the severity of errors as well as fre-
quency, and missing labels is rated as the highest severity of ten
kinds of accessibility issues. Kane et al [50] carry out a study of
mobile device adoption and accessibility for people with visual and
motor disabilities. Ross et al [66] examine the image-based button
labeling in a relative large-scale android apps, and they specify
some common labeling issues within the app. Different from their
works, our study includes not only the largest-scale analysis of
image-based button labeling issues, but also a solution for solving
those issues by a model to predict the label of the image.

There are also some works targeting at locating and solving the
accessibility issues, especially for users with vision impairment.
Eler et al [42] develop an automated test generation model to dy-
namically test the mobile apps. Zhang et al [78] leverage the crowd
source method to annotate the GUI element without the original
content description. For other accessibility issues, they further de-
velop an approach to deploy the interaction proxies for runtime
repair and enhancement of mobile application accessibility [77]
without referring to the source code. Although these works can also
help ensure the quality of mobile accessibility, they still need much
effort from developers. Instead, the model proposed in our work can
automatically recommend the label for image-based components
and developers can directly use it or modify it for their own apps.

7.3 App Accessibility Testing Tools

It is also worth mentioning some related non-academic projects.
There are mainly two strategies for testing app accessibility (for

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

users with vision impairment) such as manual testing, and auto-
mated testing with analysis tools. First, for manual testing, the
developers can use the built-in screen readers (e.g., TalkBack [12]
for Android, VoiceOver [20] for IOS) to interact with their Android
device without seeing the screen. During that process, developers
can find out if the spoken feedback for each element conveys its
purpose. Similarly, the Accessibility Scanner app [5] scans the spec-
ified screen and provides suggestions to improve the accessibility
of your app including content labels, clickable items, color contrast,
etc. The shortcoming of this tool is that the developers must run it
in each screen of the app to get the results. Such manual exploration
of the application might not scale for larger apps or frequent testing,
and developers may miss some functionalities or elements during
the manual testing.

Second, developers can also automate accessibility tasks by re-
sorting testing frameworks like Android Lint, Espresso and Robolec-
tric, etc. The Android Lint [1] is a static tool for checking all files of
an Android project, showing lint warnings for various accessibility
issues including missing content descriptions and providing links
to the places in the source code containing these issues. Apart from
the static-analysis tools, there are also testing frameworks such as
Espresso [10] and Robolectric [18] which can also check accessi-
bility issues dynamically during the testing execution. And there
are counterparts for IOS apps like Earl-Grey [9] and KIF [16]. Note
that all of these tools are based on official testing framework. For
example, Espresso, Robolectric and Accessibility Scanner are based
on Android’s Accessibility Testing Framework [7].

Although all of these tools are beneficial for the accessibility
testing, there are still three problems with them. First, it requires
developers’ well awareness or knowledge of those tools, and un-
derstanding the necessity of accessibility testing. Second, all these
testing are reactive to existing accessibility issues which may have
already harmed the users of the app before issues fixed. In addition
to these reactive testing, we also need a more proactive mechanism
of accessibility assurance which could automatically predicts the
content labeling and reminds the developers to fill them into the
app. The goal of our work is to develop a proactive content labeling
model which can complement the reactive testing mechanism.

8 CONCLUSION AND FUTURE WORK

More than 77% apps have at least one image-based button without
natural-language label which can be read for users with vision im-
pairment. Considering that most app designers and developers are
of no vision issues, they may not understand how to write suitable
labels. To overcome this problem, we propose a deep learning model
based on CNN and transformer encoder-decoder for learning to
predict the label of given image-based buttons.

We hope that this work can invoking the community attention
in app accessibility. In the future, we will first improve our model
for achieving better quality by taking the app metadata into the
consideration. Second, we will also try to test the quality of existing
labels by checking if the description is concise and informative.

REFERENCES

[1] 2011. Android Lint - Android Studio Project Site. http://tools.android.com/tips/
lint.
[2] 2017. Screen Reader Survey. https://webaim.org/projects/screenreadersurvey7/.

http://tools.android.com/tips/lint
http://tools.android.com/tips/lint
https://webaim.org/projects/screenreadersurvey7/

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

(3]
(4]
(5]

[15]

[18]
[19

[20]

[22]

[23]

[24]

[25

™
&

[27]

[28]
[29]

[30

[31

[32]

[33]

[35

[36]

2018. android.widget | Android Developers. https://developer.android.com/
reference/android/widget/package-summary.

2018. Blindness and vision impairment. https://www.who.int/en/news-room/fact-
sheets/detail/blindness-and-visual-impairment.

2019. Accessibility Scanner. https://play.google.com/store/apps/details?id=com.
google.android.apps.accessibility.auditor.

2019. Android Accessibility Guideline. https://developer.android.com/guide/
topics/ui/accessibility/apps.

2019. Android’s Accessibility Testing Framework. https://github.com/google/
Accessibility- Test-Framework-for- Android.

2019. Apple App Store. https://www.apple.com/au/ios/app-store/.

2019. Earl-Grey. https://github.com/google/EarlGrey.

2019. Espresso | Android Developers. https://developer.android.com/training/
testing/espresso.

2019. Google Play Store. https://play.google.com.

2019. Google TalkBack source code. https://github.com/google/talkback.

2019. Image Button. https://developer.android.com/reference/android/widget/
ImageButton.

2019. ImageView. https://developer.android.com/reference/android/widget/
ImageView.

2019. i0S Accessibiliyu Guideline. https://developer.apple.com/accessibility/ios/.
2019. KIF. https://github.com/kif-framework/KIF.

2019. PyTorch. https://pytorch.org/s.

2019. Robolectric. http://robolectric.org/.

2019. Talkback Guideline. https://support.google.com/accessibility/android/
answer/6283677?hl=en.

2019. VoiceOver. https://cloud.google.com/translate/docs/.

2019. World Wide Web Consortium Accessibility. https://www.w3.org/standards/
webdesign/accessibility.

Jyoti Aneja, Aditya Deshpande, and Alexander G Schwing. 2018. Convolutional
image captioning. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 5561-5570.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza-
tion. arXiv preprint arXiv:1607.06450 (2016).

Abhijeet Banerjee, Hai-Feng Guo, and Abhik Roychoudhury. 2016. Debugging
energy-efficiency related field failures in mobile apps. In Proceedings of the Inter-
national Conference on Mobile Software Engineering and Systems. ACM, 127-138.
Abhijeet Banerjee and Abhik Roychoudhury. 2016. Automated re-factoring
of android apps to enhance energy-efficiency. In 2016 IEEE/ACM International
Conference on Mobile Software Engineering and Systems (MOBILESoft). IEEE, 139-
150.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An automatic metric for
MT evaluation with improved correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evaluation measures for machine
translation and/or summarization. 65-72.

Yoav Benjamini and Yosef Hochberg. 1995. Controlling the false discovery rate: a
practical and powerful approach to multiple testing. Journal of the Royal statistical
society: series B (Methodological) 57, 1 (1995), 289-300.

John Brooke et al. 1996. SUS-A quick and dirty usability scale. Usability evaluation
in industry 189, 194 (1996), 4-7.

Margaret Butler. 2010. Android: Changing the mobile landscape. IEEE Pervasive
Computing 10, 1 (2010), 4-7.

Chunyang Chen, Xi Chen, Jiamou Sun, Zhenchang Xing, and Guogiang Li. 2018.
Data-driven proactive policy assurance of post quality in community q&a sites.
Proceedings of the ACM on human-computer interaction 2, CSCW (2018), 1-22.
Chunyang Chen, Sidong Feng, Zhenchang Xing, Linda Liu, Shengdong Zhao,
and Jinshui Wang. 2019. Gallery DC: Design Search and Knowledge Discovery
through Auto-created GUI Component Gallery. Proceedings of the ACM on
Human-Computer Interaction 3, CSCW (2019), 1-22.

Chunyang Chen, Ting Su, Guozhu Meng, Zhenchang Xing, and Yang Liu. 2018.
From ui design image to gui skeleton: a neural machine translator to bootstrap
mobile gui implementation. In Proceedings of the 40th International Conference on
Software Engineering. ACM, 665-676.

Chunyang Chen, Zhenchang Xing, and Yang Liu. 2017. By the community & for
the community: a deep learning approach to assist collaborative editing in q&a
sites. Proceedings of the ACM on Human-Computer Interaction 1, CSCW (2017),
1-21.

Chunyang Chen, Zhenchang Xing, Yang Liu, and Kent Long Xiong Ong. 2019.
Mining likely analogical apis across third-party libraries via large-scale unsu-
pervised api semantics embedding. IEEE Transactions on Software Engineering
(2019).

Guibin Chen, Chunyang Chen, Zhenchang Xing, and Bowen Xu. 2016. Learning a
dual-language vector space for domain-specific cross-lingual question retrieval. In
2016 31st [EEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 744-755.

Sen Chen, Lingling Fan, Chunyang Chen, Ting Su, Wenhe Li, Yang Liu, and Lihua
Xu. 2019. Storydroid: Automated generation of storyboard for Android apps.
In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE).

Jieshan Chen, Chunyang Chen, Zhenchang Xing, et al.

IEEE, 596-607.

Sen Chen, Lingling Fan, Chunyang Chen, Minhui Xue, Yang Liu, and Lihua Xu.
2019. GUI-Squatting Attack: Automated Generation of Android Phishing Apps.
IEEE Transactions on Dependable and Secure Computing (2019).

Sen Chen, Minhui Xue, Lingling Fan, Shuang Hao, Lihua Xu, Haojin Zhu, and
Bo Li. 2018. Automated poisoning attacks and defenses in malware detection
systems: An adversarial machine learning approach. computers & security 73
(2018), 326-344.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Pi-
otr Dollar, and C Lawrence Zitnick. 2015. Microsoft coco captions: Data collection
and evaluation server. arXiv preprint arXiv:1504.00325 (2015).

Tobias Dehling, Fangjian Gao, Stephan Schneider, and Ali Sunyaev. 2015. Ex-
ploring the far side of mobile health: information security and privacy of mobile
health apps on iOS and Android. JMIR mHealth and uHealth 3, 1 (2015), 8.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. leee, 248-255.

Marcelo Medeiros Eler, José Miguel Rojas, Yan Ge, and Gordon Fraser. 2018.
Automated accessibility testing of mobile apps. In 2018 IEEE 11th International
Conference on Software Testing, Verification and Validation (ICST). IEEE, 116-126.
Ruitao Feng, Sen Chen, Xiaofei Xie, Lei Ma, Guozhu Meng, Yang Liu, and Shang-
Wei Lin. 2019. MobiDroid: A Performance-Sensitive Malware Detection System on
Mobile Platform. In 2019 24th International Conference on Engineering of Complex
Computer Systems (ICECCS). IEEE, 61-70.

Bin Fu, Jialiu Lin, Lei Li, Christos Faloutsos, Jason Hong, and Norman Sadeh.
2013. Why people hate your app: Making sense of user feedback in a mobile
app store. In Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 1276-1284.

Sa Gao, Chunyang Chen, Zhenchang Xing, Yukun Ma, Wen Song, and Shang-
Wei Lin. 2019. A neural model for method name generation from functional
description. In 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 414-421.

Isao Goto, Ka-Po Chow, Bin Lu, Eiichiro Sumita, and Benjamin K Tsou. 2013.
Overview of the Patent Machine Translation Task at the NTCIR-10 Workshop..
In NTCIR.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Geoffrey Hecht, Omar Benomar, Romain Rouvoy, Naouel Moha, and Laurence
Duchien. 2015. Tracking the software quality of android applications along
their evolution (t). In 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 236-247.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735-1780.

Shaun K Kane, Chandrika Jayant, Jacob O Wobbrock, and Richard E Ladner. 2009.
Freedom to roam: a study of mobile device adoption and accessibility for people
with visual and motor disabilities. In Proceedings of the 11th international ACM
SIGACCESS conference on Computers and accessibility. ACM, 115-122.

Bridgett A King and Norman E Youngblood. 2016. E-government in Alabama:
An analysis of county voting and election website content, usability, accessibility,
and mobile readiness. Government Information Quarterly 33, 4 (2016), 715-726.
Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097-1105.

Solomon Kullback and Richard A Leibler. 1951. On information and sufficiency.
The annals of mathematical statistics 22, 1 (1951), 79-86.

Richard E Ladner. 2015. Design for user empowerment. interactions 22, 2 (2015),
24-29.

Yann LeCun, Yoshua Bengio, et al. 1995. Convolutional networks for images,
speech, and time series. The handbook of brain theory and neural networks 3361,
10 (1995), 1995.

Chin-Yew Lin and Eduard Hovy. 2003. Automatic evaluation of summaries
using n-gram co-occurrence statistics. In Proceedings of the 2003 Human Lan-
guage Technology Conference of the North American Chapter of the Association for
Computational Linguistics. 150-157.

Mario Linares-Vasquez, Christopher Vendome, Qi Luo, and Denys Poshyvanyk.
2015. How developers detect and fix performance bottlenecks in Android apps.
In 2015 IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 352-361.

Henry B Mann and Donald R Whitney. 1947. On a test of whether one of
two random variables is stochastically larger than the other. The annals of
mathematical statistics (1947), 50-60.

Higinio Mora, Virgilio Gilart-Iglesias, Raquel Pérez-del Hoyo, and Maria Andujar-
Montoya. 2017. A comprehensive system for monitoring urban accessibility in
smart cities. Sensors 17, 8 (2017), 1834.

https://developer.android.com/reference/android/widget/package-summary
https://developer.android.com/reference/android/widget/package-summary
https://www.who.int/en/news-room/fact-sheets/detail/blindness-and-visual-impairment
https://www.who.int/en/news-room/fact-sheets/detail/blindness-and-visual-impairment
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://developer.android.com/guide/topics/ui/accessibility/apps
https://developer.android.com/guide/topics/ui/accessibility/apps
https://github.com/google/Accessibility-Test-Framework-for-Android
https://github.com/google/Accessibility-Test-Framework-for-Android
https://www.apple.com/au/ios/app-store/
https://github.com/google/EarlGrey
https://developer.android.com/training/testing/espresso
https://developer.android.com/training/testing/espresso
https://play.google.com
https://github.com/google/talkback
https://developer.android.com/reference/android/widget/ImageButton
https://developer.android.com/reference/android/widget/ImageButton
https://developer.android.com/reference/android/widget/ImageView
https://developer.android.com/reference/android/widget/ImageView
https://developer.apple.com/accessibility/ios/
https://github.com/kif-framework/KIF
https://pytorch.org/s
http://robolectric.org/
https://support.google.com/accessibility/android/answer/6283677?hl=en
https://support.google.com/accessibility/android/answer/6283677?hl=en
https://cloud.google.com/translate/docs/
https://www.w3.org/standards/webdesign/accessibility
https://www.w3.org/standards/webdesign/accessibility

Unblind Your Apps: Predicting Natural-Language Labels for Mobile GUI Components by Deep Learning

[61] Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakriani Sakti,

Tomoki Toda, and Satoshi Nakamura. 2015. Learning to Generate Pseudo-Code
from Source Code Using Statistical Machine Translation (T). In Automated Soft-
ware Engineering (ASE), 2015 30th IEEE/ACM International Conference on. IEEE,
574-584.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a
method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting on association for computational linguistics. Association for
Computational Linguistics, 311-318.

Kyudong Park, Taedong Goh, and Hyo-Jeong So. 2014. Toward accessible mobile
application design: developing mobile application accessibility guidelines for
people with visual impairment. In Proceedings of HCI Korea. Hanbit Media, Inc.,
31-38.

[64] Juan Ramos et al. 2003. Using tf-idf to determine word relevance in document

queries. In Proceedings of the first instructional conference on machine learning,
Vol. 242. Piscataway, NJ, 133-142.

Shaoging Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn:
Towards real-time object detection with region proposal networks. In Advances
in neural information processing systems. 91-99.

Anne Spencer Ross, Xiaoyi Zhang, James Fogarty, and Jacob O Wobbrock. 2018.
Examining image-based button labeling for accessibility in Android apps through
large-scale analysis. In Proceedings of the 20th International ACM SIGACCESS
Conference on Computers and Accessibility. ACM, 119-130.

Ch Spearman. 2010. The proof and measurement of association between two
things. International journal of epidemiology 39, 5 (2010), 1137-1150.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998-6008.
Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. 2015. Cider:
Consensus-based image description evaluation. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition. 4566-4575.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. 2015. Show
and tell: A neural image caption generator. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 3156-3164.

Fahui Wang. 2012. Measurement, optimization, and impact of health care accessi-
bility: a methodological review. Annals of the Association of American Geographers

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

102, 5 (2012), 1104-1112.

Xu Wang, Chunyang Chen, and Zhenchang Xing. 2019. Domain-specific machine
translation with recurrent neural network for software localization. Empirical
Software Engineering 24, 6 (2019), 3514-3545.

Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2016. Taming Android fragmen-
tation: Characterizing and detecting compatibility issues for Android apps. In
2016 31st IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 226-237.

Frank Wilcoxon. 1992. Individual comparisons by ranking methods. In Break-
throughs in statistics. Springer, 196-202.

Shunguo Yan and PG Ramachandran. 2019. The current status of accessibility in
mobile apps. ACM Transactions on Accessible Computing (TACCESS) 12, 1 (2019),

3.

Zhenlong Yuan, Yongqiang Lu, and Yibo Xue. 2016. Droiddetector: android
malware characterization and detection using deep learning. Tsinghua Science
and Technology 21, 1 (2016), 114-123.

Xiaoyi Zhang, Anne Spencer Ross, Anat Caspi, James Fogarty, and Jacob O
Wobbrock. 2017. Interaction proxies for runtime repair and enhancement of
mobile application accessibility. In Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems. ACM, 6024-6037.

Xiaoyi Zhang, Anne Spencer Ross, and James Fogarty. 2018. Robust Annota-
tion of Mobile Application Interfaces in Methods for Accessibility Repair and
Enhancement. In The 31st Annual ACM Symposium on User Interface Software
and Technology. ACM, 609-621.

Dehai Zhao, Zhenchang Xing, Chunyang Chen, Xin Xia, and Guoqiang Li. 2019.
ActionNet: vision-based workflow action recognition from programming screen-
casts. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 350-361.

Dehai Zhao, Zhenchang Xing, Chunyang Chen, Xiwei Xu, Liming Zhu, Guogiang
Li, and Jinshui Wang. 2020. Seenomaly: Vision-Based Linting of GUI Animation
Effects Against Design-Don’t Guidelines. In 42nd International Conference on
Software Engineering (ICSE °20). ACM, New York, NY, 12 pages. https://doi.org/
10.1145/3377811.3380411

Hui Zhao, Min Chen, Meikang Qiu, Keke Gai, and Meiqin Liu. 2016. A novel
pre-cache schema for high performance Android system. Future Generation
Computer Systems 56 (2016), 766-772.

https://doi.org/10.1145/3377811.3380411
https://doi.org/10.1145/3377811.3380411

