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UI design is an integral part of software development. For many developers who do not have much UI design

experience, exposing them to a large database of real-application UI designs can help them quickly build up

a realistic understanding of the design space for a software feature and get design inspirations from exist-

ing applications. However, existing keyword-based, image-similarity-based, and component-matching-based

methods cannot reliably find relevant high-fidelity UI designs in a large database alike to the UI wireframe that

the developers sketch, in face of the great variations in UI designs. In this article, we propose a deep-learning-

based UI design search engine to fill in the gap. The key innovation of our search engine is to train a wireframe

image autoencoder using a large database of real-application UI designs, without the need for labeling relevant

UI designs. We implement our approach for Android UI design search, and conduct extensive experiments

with artificially created relevant UI designs and human evaluation of UI design search results. Our experi-

ments confirm the superior performance of our search engine over existing image-similarity or component-

matching-based methods and demonstrate the usefulness of our search engine in real-world UI design tasks.
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1 INTRODUCTION

Graphical User Interface (GUI) is ubiquitous in modern desktop software, mobile applications, and
web applications. It provides a visual interface between a software application and its end users
through which they can interact with each other. A well-designed GUI makes an application easy,
practical, and efficient to use, which significantly affects the success of the application and the
loyalty of its users [7, 46, 71]. For example, in the competitive mobile application market, the design
of an application’s GUI, or even its icon, has become crucial for distinguishing an application from
competitors, attracting user downloads, reducing users’ complaints, and retaining users [4, 37, 56].

Designing the visual composition of a GUI is an integral part of software development. Based
on the initial user needs and software requirements, the designers usually first design a wireframe

of the desired GUI by selecting highly simplified visual components with special functions (for
example those shown in Figure 1) and determining the layout of the selected components that
can support the interactions appropriate to application data and the actions necessary to achieve
the goals of users, and modify their designs iteratively by comparing with existing online de-
sign examples. They then add high-fidelity visual effects to the GUI components, such as colors
and typography, and add application-specific texts and images to the GUI design. Of course, the
wireframe design and the high-fidelity GUI design are interweaving and iterative during which de-
signers continually explore the design space by removing unnecessary visual components, adding
missing components, and refining the components’ layout and visual effects.

To satisfy users’ needs, designing a good GUI demands not only the specific knowledge of de-
sign principles and guidelines (e.g., Android Material Design [5] and iOS Human Interface Guide-
lines [10]) but also the understanding of design space that has the great variations in visual com-
ponents that can be potentially used, their layout options, and visual effect choices. As shown
in Figure 2, the design space of a GUI, even for the simple sign-up feature, can be very large.
However, due to the shortage of UI designers [42], software developers who do not have much
understanding of UI design space often have to play the designer role in software development,
especially in start-up companies and open-source projects. For example, in a survey of more than
5,700 developers [1], 51% respondents reported that they do not have much UI design training, but
they work on UI design tasks, more so than other development tasks. In fact, when developing
an application, what software developers and designers focus on are totally different. Developers
try to make the application work while designers focus making it look good [12], which makes it
tough for software developers to directly work as designers. An effective mechanism is needed to
support such developers to explore and learn about the UI design space in their UI design work.

Providing developers with a UI design search engine to search existing UI designs can help
developers quickly build up a realistic understanding of the design space of a GUI and get inspi-
rations from existing applications for their own application’s UI design. However, compared with
the well-supported code search [55, 62, 63, 70], there has been little support for UI design search.
Existing UI design search methods [6, 11, 22] are based on keywords describing software features,
UI design patterns or GUI components. Although keyword-based UI search could provide some
initial design inspirations, a more advanced UI design search engine is still needed to explore the
design space in a more targeted manner, which can directly take as input a schematic UI (e.g.,
a wireframe) that the developers sketch and returns high-fidelity UI designs alike to the input
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Fig. 1. The most common wireframe components for Android UI design. Each component has its own func-

tion. For example, TextView will show text to the user and EditText enables user to input text.

(see Section 2 for a motivating scenario). However, a few keywords can hardly describe the visual
semantics of a desired UI design, such as visual components used and their layout.

As the advanced UI design search can consider UI designs as images, a naive solution could be
searching UI designs by image similarity of certain image features such as color histogram [45]
or Scale-Invariant Feature Transform (SIFT) [54]. Although such image features are useful for
measuring image similarity, they are agonistic of the visual semantics (visual components and
their compositions) of a GUI. As such, imagewise similar UI designs are very likely designwise
irrelevant. Alternatively, one can heuristically match individual visual components based on their
type, position and size for measuring the similarity of two UI designs [19, 66, 78]. However, such
methods are restricted by the pre-defined component-learning rules, and is sensitive to the cut-off
matching thresholds. Furthermore, individual component-matching heuristics often retrieve many
irrelevant UI designs, because individual component matching cannot effectively encode the visual
composition of components in a GUI as a whole.

The most related work is Rico [35], which introduces a new UI dataset, discusses five potential
usages and demonstrates the possibility of assisting UI search. Their dataset is collected by auto-
matic app exploration and manual exploration by recruiting crowd workers. In terms of UI search
demonstration, they use a simple multilayer perceptron with only six fully connected layers, sim-
plify the UI components as text/non-text, and show several examples without any detailed statistics
on performance results. As discussed above, UI designs are sophisticated with many variants, so it
is impossible to merely use text and non-text to express the core concepts of one UI design. Besides,
the complex combination of different widgets with arbitrary numbers and positions shows a huge
design space in terms of typology. Therefore, a naive method with highly simplified widgets is not
enough to tackle this task. Note that the Rico evaluation only shows several examples without any
detailed studies on retrieval accuracy, data issue, model limitation, failure cases, and usefulness
evaluation. Thus, we cannot know the generalization or performance of their model.

In this article, we present an approach to develop a deep-learning-based UI design search engine
using a convolutional neural network instead of purely fully connected layers. To expose devel-
opers to diverse, real-application UI designs for a variety of software features, we use reverse-
engineering method (such as the automatic GUI exploration methods in Reference [27]) to build
a large database of UI screenshots (and their corresponding wireframes) of existing applications.
We further identify 16 user interaction components that narrow the gap between designers and
developers by analyzing several design platforms and UI implementation details. Our approach
performs wireframe-based UI design search. A wireframe captures the type and layout informa-
tion of visual components but ignores their high-fidelity visual details. As such, they can be fast
prototyped and refined with minimal effort and can retrieve visually different but semantically rel-
evant UI designs (see Figure 2 for example). Our approach does not perform individual component
matching, but it attempts to judge the relevance of the whole UI designs. A key challenge in de-
veloping such a robust UI-design relevance model is that no labelled relevant UI designs exist and
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it requires heavy manual efforts to annotate such a large dataset. Thus, we cannot use supervised
learning methods like [29, 50] to train the model for encoding the visual semantics of UI designs.
To overcome this challenge and relieve the heavy manual efforts, we design a wireframe autoen-
coder that can be trained using a large database of UI wireframes in an unsupervised way. Once
trained, this autoencoder can encode both the query wireframe by the user and the UI screenshots
of existing applications through their corresponding wireframes in a vector space of UI designs.
In this vector space, retrieving UI screenshots alike to the query wireframe can be easily achieved
by k-nearest neighbors (kNN) search.

As a proof of concept, we implement our approach for searching Android mobile application
UI designs in a database of 54,987 UI screenshots from 25 categories1 of 7,748 top-downloaded
Android applications in Google Play. We evaluate the performance, generalization and usefulness
of our UI design search engine2 with an automatic evaluation of 4500 pairs of relevant UI designs
generated by component-scaling and component-removal operations, the human evaluation of the
relevance of the top-10 UI designs returned for 50 unseen query UIs from 25 applications (not in
our database), and a user study with 18 non-professional UI designers on five UI design tasks. Our
evaluation confirms the superior performance of our approach than the baselines based on low-
level image features (color histogram and SIFT), individual component-matching heuristics and
fully connected layers-based neural network. The user study participants highly appreciate the
relevance, diversity and usefulness of UI design search results by our tool in assisting their design
work. They also point out several user needs for UI design search, such as constraint-aware UI
design search, more flexible encoding of component layouts.

Our contributions can be summarized as follows:

• We propose a novel deep-learning-based approach using convolutional neural network in
an unsupervised manner for building a UI design search engine that is flexible and robust
in face of the great variations in UI designs.

• We build a large wireframe database of UI designs of top-downloaded Android applications
by exploring different wireframing approaches and develop a web-based search interface
to implement our approach.

• Our extensive experiments demonstrate the performance, generalization, and usefulness of
our approach and tool support and point out interesting future work.

The rest of the article is organized as follows. Section 2 presents a motivating scenario to de-
scribe the potential usage of our tool. Section 3 describes the general approach of data collection,
model structure and the principle of our UI design search engine. Section 4 reveals the detailed
methodology of the selection of types and representations of wireframes, the selection of model
hyperparameters, and the tool implementation. We describe our experiment setup and results in
Section 5 and Section 6, respectively, in terms of the best representation of wireframes, accuracy,
generalization, and usefulness. Potential threats to validity are discussed in Section 7. Section 8
discusses related work, and Section 9 concludes the article.

2 MOTIVATING SCENARIO

A start-up company needs to design the UIs for its mobile application. Like many small compa-
nies [42], it does not have a professional UI designer due to budget constraints. So the design work

1Since Google Play updated their app categories after our data collection, the number of categories (25) of our dataset is

different from the current number (35) in Google Play.
2All UI design images in this article and all experiment data and results can be downloaded at our Github repository:

https://github.com/chenjshnn/WAE.
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Fig. 2. UI design search: Benefits and challenge.

is assigned to a software developer Lucy. Lucy has some desktop software front-end development
experience but never designs a mobile application UI.

The first task for Lucy is to design a sign-up UI for collecting user information, such as user
name, password, and email, during user registration. Based on her prior desktop software devel-
opment experience, Lucy designs a very basic sign-up UI (Figure 2(a)). It has several side-by-side
TextView and EditView: TextView for displaying a label for the information to be collected and
EditView for entering the information. At the bottom, it has a button for submitting the entered
user information.

Lucy is afraid that her design is neither complete, nor trendy for mobile applications. She would
like to see if other applications design sign-up UIs like hers, but she does not want to randomly
download and install applications from app market just to see their sign-up UIs (if any). Not only
is it time-consuming, but it also cannot give a systematic view of relevant UI designs. A better
solution is to feed her UI design into an effective UI design search engine that can return similar
but visual-effect-diverse UI designs from a large database of UI designs.

Lucy tries to use such a UI design search engine to obtain a list of UI designs alike to her initial
sign-up UI design. Observing the returned UI designs, Lucy realizes that although her initial design
has the basic functionality, it does miss some nice and important features. For example, she can
add a show/hide password button (e.g., Figure 2(b)), which is convenient for users to confirm the
entered password. Furthermore, sign-up UI is a good place for users to access and acknowledge rel-
evant terms and conditions (e.g., Figure 2(c)). Based on such observations, Lucy refines her design
as the one in Figure 2(d) (changes highlighted in blue box) and search the UI design database again.

Observing the search results, Lucy gains a realistic understanding of what a trendy sign-up
form needs, including visual components, layout options and visual effects, and further refines her
design. For example, mobile applications often have a navigation button at the top (e.g., the back
button in Figure 2(b), (c), (e), and (f)) to facilitate the navigation among UI pages. Furthermore,
unlike the traditional side-by-side label-text input design in desktop software, mobile applications
use an editable text with hint to achieve the same effect (Figure 2(c), (e), and (f)). This design
works better for mobile devices that have much smaller screens than desktop computer. Based on
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Fig. 3. An overview of our approach.

these design inspirations, Lucy further refines her design as the one in Figure 2(g). Comparing
the UI design search results ((e.g., Figure 2(h), (i), and (j)) with the design in Figure 2(g), Lucy is
now confident in her final UI wireframe. Furthermore, observing many relevant and diverse UI
designs gives Lucy many inspirations for designing high-fidelity visual effects (e.g., color system,
typography) for her UIs.

As UI designs in Figure 2 shows, the design space of a GUI can be very huge, with the great
variations in the following: (1) the type of visual component used (e.g., checkbox in many UI
designs versus switch unique in Figure 2(h)); (2) the number of visual components in a design (e.g.,
editable text and button in Figure 2(g), (i), and (j)); (3) the position and size of visual components
(e.g., editable text and button in Figure 2(b) versus (h)); and (4) the layout of visual components
(e.g., side-by-side label-textinput in Figure 2(a) versus up-down label-textinput in Figure 2(b) or
left-checkbox + right-text in Figure 2(c) versus left-text + right-switch in Figure 2(h)). Achieving
the above-envisioned benefits of UI design search requires the search engine to be flexible and
robust in face of the great variations and to achieve a good balance between similarity and variation
in UI designs.

3 OUR APPROACH

Figure 3 presents the overview of our deep-learning-based approach for building a UI design search
engine that is flexible and robust in the face of the great variations in UI designs. Our approach
consists of three main steps: (1) build a large database of diverse, real-application UI designs us-
ing automatic GUI exploration-based methods (Section 3.1); (2) train a CNN-based wireframe au-
toencoder for encoding the visual semantics of UI designs using a large database of UI design
wireframes (Section 3.2); and (3) embed the UI designs in a latent vector space using the trained
wireframe encoder and support wireframe-based kNN UI design search (Section 3.3)

3.1 Large Database of Real-Application UI Designs

A large database of diverse, real-application UI designs for a variety of different software features
is necessary to expose developers to the realistic UI design space. To that end, we adopt automatic
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data collection method to first build a large database of UI designs from existing applications and
then use collected data to further construct our wireframe dataset.

3.1.1 Automatic GUI Exploration. Different techniques can be used for automatically explore
the GUIs of mobile applications [27, 35], web applications [51, 67], or desktop applications [18].
Although technical details are different, these techniques work conceptually in the same way. They
automatically explore the GUI of an application by simulating user interactions with the applica-
tion and output the GUI screenshot images and the runtime visual component information that
identifies each component’s type and coordinates in the screenshots. During the GUI exploration
process, the same GUIs may be repeatedly visited, but the duplicated screenshots are discarded
to ensure the diversity of the collected UI designs. To enhance the quality of the collected UI de-
signs, further heuristics can be implemented to filter out meaningless UIs, for example, the home
screen of a mobile device, the simple UIs which only contain one/two big component(s) and do not
require specific design. In detail, we first crawl apps from Google Play and automatically install
and run the app in the simulator. For each app, our simulator interacts with the app by simulat-
ing the user’s actions, including clicking buttons, entering text, and scrolling the screen. When
entering one new page, our tool will take a screenshot of the current UI and dump the XML run-
time code. The XML runtime code contains all information about the current UI, including all
contained components with their corresponding bounds, class, text, Boolean attributes regarding
executability (such as checkable, clickable and scrollable), and the hierarchical relationship among
them. To ensure the coverage of our explored UIs, we also apply the rules set in Reference [27],
which define the probability (or weight) of each potential actionable component to be pressed.
There rules are defined as follows: (1) actions with higher frequency are given lower weights,
since we need to give other rare actions chance to perform; (2) actions that would lead to more
subsequent UIs would have higher weights to explore various UIs; and (3) some special actions
(such as hardware back and scroll) would be controlled in case they close current page or impact
others’ actions at the wrong time. The actual weights of each executable components are given
by weights(a) = (α ∗Ta + β ∗Cα )/γ ∗ Fa , where a, Ta , Cα are the action, the weights of different
types of actions, and the number of unexplored executable components in current UI, respectively,
and α , β,γ are the hyperparameters. Since this collection process is automatic, some UIs may be
revisited several times, and we need to remove duplicate data. To this end, we compare current
dumped XML code files with the collected data by comparing the hash value of GUI component
sequences.

3.1.2 Wirification. Our approach performs wireframe-based UI design search. Therefore, dif-
ferent from existing reverse-engineering methods, we need to further obtain a UI wireframe for
each collected UI screenshot in the database. To that end, we have two steps. First, we define a
set of wireframe components that are essential for different kinds of user interactions at the de-
sign level by analysing popular designer’s tools and the underlying implementation details of UIs.
Second, we find the “right” representation of each component by our exploration experiments.

Selection of component types. First, there are two types of Android UI components in terms
of functionality: layout components and UI control components [13]. The UI control components
(e.g., button, textView, ImageView) are the visible components we could see and interact with,
while layout components (e.g., linearLayout, relativeLayout) are used for constraining the position
relationship among UI control components. As the input of this work is just the wireframe that
involves more about the control component selection with rough position, we are concerned with
only UI control components (we briefly mention it as UI components). There are 21 UI components
in our dataset, which we choose as the candidate components for the wireframe. When converting
a UI screenshot with corresponding runtime code, we consider two factors: (1) Components with
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Fig. 4. Bar chart of the frequency of each component contained in our dataset.

similar function and similar visual effect would not have much difference when designing the wire-
frame, and (2) components that are rarely used may not be very useful for the UI design. For the
first consideration, we merge MultiAutoCompleteTextView with EditText. Both of them enable ed-
itable text, but MultiAutoCompleteTextView has additional text auto-complete function. However,
this function can be achieved in EditText by manifesting the underlying background code. We also
merge ImageButton with Button, because they both enable users to click them and then trigger
some events. In terms of the second consideration, we ignore the CalenderView, TimePicker, and
DatePicker components as they appear only once in our dataset (see Figure 4). The low frequency
may because they are further separated into several children components, such as TextView and
Spinner. As a result, we are left with 16 components as our final set of wireframe units. The 16
types of components are also widely covered by popular wireframe tools for mobile UI design like
Adobe XD [14], Fluid UI [16], and Balsamiq Mockups [15]. In the implementation of the wirefram-
ing process, we use the representation of EditText to represent MultiAutoCompleteTextView and
the representation of Button to represent ImageButton in the wireframe. We do not draw Calen-
derView, TimePicker, and DatePicker in the wireframe for the above reason. For other components,
we draw them with their own representations in the wireframe. We release the source code of the
wireframe transformation in our Website.3

Wirification Process. After defining the 16 core wireframe components, a UI screenshot is then
wirified into a UI wireframe using the XML runtime code file we dumped during the automatic
explorations of apps. Note that there is no uncertainty during this process as it is completely a rule-
based process. We wireframe the screenshot according to its dumped runtime code directly from
the Android operating system, which contains the type and coordinates of each component in a UI
screenshot. Therefore, these UI screenshots and the corresponding runtime code files are perfectly
matched, and there will be no error during the wireframe transformation. Figure 5 illustrates this
high-level wirification process: The UI wireframe is of the same size as the UI screenshot and has
a white canvas on which a wireframe component is drawn at the same position and of the same
size as each corresponding visual component in the UI screenshot (e.g., ImageView). However, the
wireframe components ignore the color and the text/image content of the corresponding visual
components.

Exploration of the best representation way of wireframes. In addition to this, we need to
define the representation of these components to construct our final wireframe dataset. We do not

3https://github.com/chenjshnn/WAE.
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Fig. 5. The visual rendering of the wireframe illustrates that top large ImageView.

Fig. 6. The architecture of our wireframe autoencoder.

use the default images of popular tools [14–16], as they are not precise or general enough. Instead,
we represent them with simple rectangles in different colors, which can explicitly tell the model
that those components are different. Due to the huge design space, it is unrealistic to consider
all colors and color palettes, so we consider three typical variants to represent these visual com-
ponents, namely different grey-scale values, different colors, and different colors with different
textures. The detailed exploration setup and results of the best representation of components will
be discussed later in Section 5.2 and Section 6.1, respectively. Note that to avoid potential distrac-
tion, we present our wireframe as text with different grey-scale color background to help readers
better understand these wireframes in the article.

3.2 CNN-based Wireframe Autoencoder

Determining the relevance of UI designs is a challenging task, in that it requires encoding not only
visual components individually but also the visual composition of the components in a UI as a
whole. The design space of what components to use and how to compose them in a UI is huge and
thus cannot be heuristically enumerated. CNN-based model can automatically learn latent features
from a large image database, which has outperformed hand-crafted features in many computer vi-
sion tasks [39, 50, 52]. Although we have a large database of UI designs, the relevance of these UI
designs are unknown. Therefore, we have to train a CNN model for encoding the visual semantics
of UI designs in an unsupervised way. To that end, we choose to use a CNN-based image autoen-
coder architecture [69] that requires only a set of unlabeled input images for model training. As il-
lustrated in Figure 6, our autoencoder takes as input a UI wireframe image. It has two components:
an encoder compresses the input wireframe into a latent vector representation through convolu-
tion and downsampling layers and then a decoder reconstructs an output image from this latent
vector representation through upsampling and transposed convolution layers. The reconstructed
output image should be as similar to the input image as possible, which indicates that the latent
vector captures informative features from the input wireframe design for reconstructing it. This
latent vector representation of UI designs can then be used to measure the relevance of UI designs.
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3.2.1 Convolution. A convolution operation performs a linear transformation over an image
such that different image features become salient. According to the research of CNN visualiza-
tion [52, 76], shallow convolutional layers detects simple features such as edges, colors, and shapes,
which are then composed in the deep convolutional layers to detect domain-specific features (e.g.,
the visual semantics of UI designs in our work).

An image is represented as a matrix of pixel values, i.e., 0 � phwd � 255, where h, w , and d
are the height, width, and depth of the image; d = 1 for grayscale image and d = 3 for RGB color
image. The convolution of an image uses a kernel (i.e., a small matrix like 3 × 3 × d of learnable
parameters) and slide the kernel over the image’s height and width by 1 pixel at a time. At each
position, the convolution operation multiplies the kernel elementwise with the kernel-size subre-
gion of the image, and sums up the values into an output value. The transposed convolution is the
opposite to the normal convolution. It multiples a value with a kernel and outputs a kernel-size
matrix. A convolutional layer can apply a number of kernels (n). The output matrix (h ×w × n)
after a convolutional layer is called a feature map, which can be fed into the subsequent network
layers for further processing. Each kernel map h ×w in the feature map corresponds to a kernel
and can be regarded as an image with some specific features highlighted.

3.2.2 Downsampling and Upsampling. Within the encoder, downsampling (also called pooling)
layers take as input the output feature map of the preceding convolutional layers and produce a
spatially (height and width) reduced feature map. A downsampling layer consists of a grid of pool-
ing units, each summarizing a region of size z × z of the input kernel map. As the downsampling
layer operates independently on each input kernel map, the depth of the output feature map re-
mains the same as that of the input feature map. In our architecture, we adopt 1-max pooling [60]
that takes the maximum value (i.e., the most salient feature) in the z × z region. 1-max pooling
brings the benefits of the invariance to image shifting, rotation and scaling, leading to a certain
level of insensitivity to encoding component spatial variations in UI designs.

Within the decoder, we use the upsampling layers that are opposite to downsampling. They
increase the spatial size (height and width) of the feature map by replacing each value in the input
feature map with multiple values. In our architecture, we adopt the nearest-neighbor interpola-
tion [49], i.e., enrich the original pixel in the feature map into a z × z region with the same value as
the original pixel. The upsampling layers progressively increase the spatial size of the feature map
until the decoder finally reconstructs an output wireframe of the same size as the input wireframe.

3.2.3 Model Training. The encoder and the decoder are trained as an end-to-end system. Given
a UI wireframe image X , the encoder compresses it into the latent vector V : ϕ : X → V , where
ϕ represents the function of the encoder’s convolutional and downsampling layers. Then the de-
coder decodes the latent vector V into an output wireframe image Y : ψ : V → Y , where ψ rep-
resents the function of the decoder’s upsampling and transposed convolutional layers. The tar-
get is to minimize the difference between the input wireframe X and the output wireframe Y :
argminϕ,ψ ‖X − Y ‖2. We train our wireframe autoencoder to minimize the reconstruction errors

with mean square error (MSE) [21], i.e.,L (X ,Y ) = ‖X − Y ‖2. At the training time, we optimize the
MSE loss over the training dataset using stochastic gradient descent [23]. The decoder backpro-
pogates error differentials to its input, i.e., the encoder, allowing us to train a wireframe encoder
using unlabelled input wireframes.

3.3 kNN Search in UI Design Space

As shown in Figure 6, by training the wireframe autoencoder, we obtain a convolutional encoder
that can encode an input wireframe into a latent vector representation. Given a database of au-
tomatically collected UI screenshots (can be different from the UI screenshots used for model
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training), we use this trained wireframe encoder to embed the UI screenshots through their cor-
responding wireframes into a UI design space S . Each UI screenshot uis is represented as a latent
vectorV (uis ) in this UI design space. Given a query wireframew fq drawn by the user, we also use
the trained wireframe encoder to embed w fq into a vector V (w fq ) in the UI design space. Then,
we perform kNN search in the UI design space to find the UI screenshots uis whose embedding is
the top-k most similar (by Mean Square Error (MSE) in this work) to that of the query wireframe,
i.e., argmink

uis ∈S | |V (uis ),V (w fq ) | |2. Figure 7 shows some examples of UI design results from our
empirical studies. The fourth example shows that our model can successfully encode the visual
semantics of rather complex UI designs.

4 PROOF-OF-CONCEPT IMPLEMENTATION

4.1 Data Collection

We develop a proof-of-concept tool for searching Android mobile application UI designs. The back-
end UI design space contains 54,987 UI screenshots from 7,748 Android applications belonging to
25 application categories. We crawl the top-downloaded Android applications from Google Play,
because studies show that the download number of an application correlates positively with the
quality of the application’s GUI design [37, 56]. There are three types of Android Apps: native,
hybrid, and web apps [43]. The underlying implementations of these types are different. Native
apps use Android native widgets or widgets derived from them, hybrid apps utilize WebView to
encode their HTML/CSS part components into an Android Application, and web apps directly use
HTML/CSS/JavaScript. In our article, we only collect UIs from native and hybrid applications, be-
cause they are easy to download and install from app store, while there is no such “app store” for
web applications. We remove some UIs, whose WebView takes over half of the screen. We keep
small WebView component, because most of them are advertisement

We use the automatic GUI exploration method in Reference [27] to build a large database of UI
screenshots from these Android applications, and the detailed process is stated in Section 3.1.1. In
total, we crawled 8,000 Android apps from Google Play with the highest installation numbers and
successfully ran 7,748 Android applications and collected 54,987 UI screenshots. Note that some
apps were discarded due to the need of extra hardware support or the absence of some certain third
party libraries in our emulator. The median number of UI screenshots per application is three. Our
database contains very diverse UI designs (see Figure 3 for some randomly selected examples).
More examples can be seen in our Github repository.4

4.2 Model Hyperparameters

The wireframe autoencoder in our tool is configured as follows. The input wireframe is a RGB
color image and scaled to 180 × 228 for efficient processing. The encoder uses four convolutional
layers, which use sixteen 3 × 3 × 3 kernels, thirty-two 3 × 3 × 16 kernels, thirty-two 3 × 3 × 32
kernels, and sixty-four 3 × 3 × 32 kernels, respectively. Each convolutional layer is followed by
a ReLU (x ) =max (0,x ) non-linear activation function, a 1-max pooling layer with 2 × 2 pooling
region, and a batch normalization layer [44]. The decoder upsamples a value in the input kernel
map into a 2 × 2 region of that value. It has four upsampling layers. After each upsampling layer,
the decoder uses a transposed convolutional layer, which uses thirty-two 3 × 3 × 64 kernels, thirty-
two 3 × 3 × 32 kernels, sixteen 3 × 3 × 32 kernels, and three 3 × 3 × 16 kernels, respectively.

4https://github.com/chenjshnn/WAE.
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Fig. 7. Examples of kNN search in UI design space.

4.3 Tool Implementation

We use k = 10 for kNN in all our experiments and our tool.5 Figure 8 shows the frontend of our
tool. A demo video of this search interface is available in our Github repository,4 which demon-
strates the UI design search process of our motivating scenario. Using our tool, the user draws
a UI wireframe on the left canvas. The tool currently supports 16 most frequently used types of

5We do not make k too big as developers tend not to browse a long list of recommendations [28, 53, 68, 74, 75].
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Fig. 8. The core page of our User Interface Search Website.

wireframe components as shown in Figure 1. We identify these wireframe components as core for
Android mobile applications by surveying Android GUI framework and popular UI design tools
such as Adobe XD [14], Fluid UI [16], and Balsamiq Mockups [15] as stated in Section 3.1.2. Once
the user clicks search button, the system returns the top-10 (i.e., k = 10 for kNN) UI designs in
the UI design space that are most similar to the wireframe on the drawing canvas. The user can
iteratively refine the wireframe and search relevant UI designs.

5 EXPERIMENT DESIGN

In this section, we describe the research questions (RQs), we investigate in experiments, and then
we elaborate on the setup for each RQ, including the experimental dataset, baseline models, met-
rics, and procedure.

5.1 Research Questions (RQs)

Our evaluation aims to answer the following RQs:

• RQ1: Effective of the different representation of wireframes: Which kind of color
palates used to represent the wireframe performs the best? Why does the performances
differ?

• RQ2: Accuracy performance on artificial dataset of our UI search engine: How well
does our approach achieve the goal of finding the relevant UI designs in face of the great
variations in UI design? How well does it compare with image-similarity-based, component-
matching-based, or naive neural network-based UI design search, and what are the reasons
for this?

• RQ3: Generalization ability to real-world user interfaces: How well does our model
perform from the perspective of developers? How well does it compare to the best baseline
in RQ2?

• RQ4: User study of the recommendations from our tool in terms of usefulness and

diversity: Does our search engine really help developers to design UIs? To what extent does
our search engine help them in terms of the usefulness and diversity of the recommended
UIs?
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Fig. 9. Example of different input format. From left to right, they are original UI images, color-level wire-

frame, grey-level wireframe, and texture-level wireframe.

5.2 RQ1: Effective of the Different Representation of Wireframes

We introduce the training datasets and the experimental datasets for evaluating the effectiveness
of different kinds of wireframes and then the metrics used in this evaluation. Note that the method
used to generate these datasets and the metrics used in this evaluation are also used to answer RQ2.

5.2.1 Experimental Dataset. To answer RQ1, we need to first construct several wireframe
datasets using different representations of wireframes as the training datasets. We then con-
struct another experimental dataset to automatically evaluate the effectiveness of the three models
trained by these different kinds of representations of wireframes.

We investigate three types of representation of visual components, including different grey-scale
values, different colors and different colors with different textures. We denote these as grey-level,
color-level, and texture-level wireframes, respectively. An example of these three representations
can be seen in Figure 9. For three kinds of training dataset, we can directly generate them using
the method stated in Section 3.1.2.

Second, to evaluate the performance of a UI-design search method in terms of different represen-
tations of wireframe, we require a dataset of relevant UI designs. Unfortunately, no such datasets
exist. It is also impossible to manually annotate such a dataset in a large UI design database for
large-scale experiments of a method’s capability in face of different UI design variations. Inspired
by the data augmentation methods used for enhancing the training of deep-learning models [34,
64], we change a UI screenshot in our Android UI design database to artificially create pairs of
relevant but variant UI designs.

Based on the position/size of components in a UI screenshot (see Section 3.1), we perform two
types of change operations that are suitable for UI designs: component scaling and component re-

moval. Component scaling is to scale down all visual components in a UI wireframe to their center
point by 5%, 10%, 15%, 20%, 25%, or 30% pixels (round-up) of their original size (see Figure 10(a)),
which simulates design variations in component position/size. Component removal is to randomly
remove some visual components that cover 10%±5%, 20%±5%, or 30%±5% of the total area of all
components (see Figure 10(b)), which simulates design variations in component type/number. We
denote 10%±5%, 20%±5% or 30%±5% in component removal treatment as removal10, removal20,
and removal30 for simplicity. As the examples in Figure 2 show, such design variations are com-
monly present in relevant UI designs. In reality, these two types of design variations may occur
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Fig. 10. Examples of component-scaling and component-removal treatment.

at the same time. But we perform the two types of changes separately to investigate a search
method’s capability of handling different types of design variations.

We randomly select two sets of screenshots from 25 categories, and each set is composed of 500
screenshots. Note that for each set, the proportion of the screenshots taken from each category is
the same as the original proportion of each category in the total database. We then apply the six
scaling treatments to the first set and the three component-removal treatments to the second set.
The UI screenshots in the second set should have at least 5 UI components so that there are some
components left after component removal. As a result, we obtain 4,500 pairs of original-treated
UIs, which are considered as relevant but variant UI designs. We have nine experiments (one for
each treatment). For example, the Scale10 experiment uses the UIs obtained by 10% component
scaling as query. Note that we generate the corresponding experimental wireframe dataset three
times using the above mentioned three types of representation of wireframes, which means that we
have three experimental datasets, each of them contains 4,500 pairs of original-treated UIs. Using
this dataset, we evaluate how well a search method can retrieve the original UI in the database
using a treated UI design as query in terms of different representation of wireframes.

5.2.2 Evaluation Metrics. We evaluate the performance of a UI-design search method by two
metrics: Precision@k (Pre@k) (k=1) and Mean Reciprocal Rank (MRR). The higher value a metric
is, the better a search method performs. Precision@k is the proportion of the top-k results for a
query UI that are relevant UI designs. As we consider the original UI as the only relevant UI for a
treated UI in this study, we use the strictest metric Pre@1: Pre@1=1 if the first returned UI is the
original UI, otherwise Pre@1=0. MRR computes the mean of the reciprocal rank (i.e., 1/r) of the
first relevant UI design in the search results over all query UIs.
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5.3 RQ2: Accuracy Performance of Our UI Search Engine

In this RQ, we use the explored best representation of wireframes in RQ1. We evaluate how well
our approach achieves the goal of finding the relevant UI designs in the face of great variations in
UIs and how well it compares with image-similarity-based, component-matching-based, or naive
neural network-based UI design search, and what are the reasons behind this. In the following, we
introduce the experimental dataset and metrics used in this RQ and then elaborate the baseline
models used.

5.3.1 Dataset and Metrics. To automatically evaluate and compare the effectiveness of our
model and the baselines, we use the same treatments to construct the experimental dataset, while
at this time, we only need to consider one kind of representation of wireframes. We again randomly
select 500 UI images from 25 categories, which are different from the data in RQ1, to construct the
experimental dataset, and then apply the nine treatments stated in Section 5.2.1. In total, we have
4500 pairs of original-treated UIs, which are considered as relevant but variant UI designs. Using
this dataset, we evaluate how well a search method can retrieve the original UI in the database
using a treated UI design as query. Beside, we also take the same metrics stated in Section 5.2.2

5.3.2 Baseline Methods. We consider four baselines: two of them computes image similarity
using simple color histogram and advanced SIFT feature, respectively, the third one implements the
component-matching heuristics proposed by GUIFetch [19], and the last one uses the naive neural
network with fully connected layers from Rico [35]. These four baselines are used to evaluate RQ2,
and the results of RQ2 would determine the baselines used in RQ3.

Image-feature-based similarity. Color histogram is a simple image feature that represents
the distribution of colors in each RGB (red, green, blue) channel. It has been widely used for image
indexing and image retrieval [40, 41, 45]. The scale-invariant feature transform (SIFT) [54] is an
advanced image feature widely used for image retrieval [48, 73], object recognition [54], image
stitching [24]. It locates keypoints in images and use the local features of the keypoints to represent
images. Different images can have different numbers of keypoints but each keypoint is represented
in a same-dimensional feature vector. These two baselines return the top-k most similar UI designs
by the image-feature similarity.

Heuristic-based component matching. GUIFetch [19] is a recently proposed technique for
searching similar GUIs by a similarity metric computed from the matched components between
the two GUIs. It matches the components of the same type. The similarity of the two components is
calculated based on the differences of the two components’ x-coordinate, y-coordinate, length, and
width. If the difference of one factor is within a given threshold, then the similarity score increases
by 10, otherwise 0. After computing the similarity score for each pair of components in the two
UIs, it uses a bipartite matching algorithm [47] to determine an optimal component matching. The
similarity scores of the matched components are summed up and then divided by the maximum
similarity value that the components in the query UI can have (i.e., 40 multiplies the number of
components in the query UI). It then returns the top-k UIs with the highest similarity scores to the
query UI.

Neural-network-based matching. Rico [35] is a UI dataset introduced to support various tasks
in the UI design domain. It demonstrates the potential usage of UI search based on a naive neural
network with six fully connected layers within the autoencoder framework. The latent vectors
from their model are used as the features of their wireframe dataset. In terms of inference, they
first extract the latent vector of the query wireframe, compare it with the latent vectors of their
dataset, and then return the nearest neighbors as recommendations. For a fair comparison, we
adopt the same configuration mentioned in their article for training the model on our dataset.
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5.4 RQ3: Generalization Ability to Real-world User Interfaces

To further evaluate our model when applied to real-world applications, we conduct a human eval-
uation of the relevance of the UI design search results. We do this by searching the UI design
database using unseen UI designs as queries to confirm the generalization of our model and an-
swer RQ3. To this end, we need to construct another dataset of unseen UIs. We introduce this
dataset, the human evaluation procedure and the metrics in the following. Note that the baselines
in this RQ are defined by the results of RQ2. We only consider several (not all) baselines from RQ2,
because human evaluation of the relevance of UI design search results is labor intensive.

5.4.1 Dataset of Unseen Query UIs. The UI design database of our tool contains UI screenshots
from 25 categories of Android applications. We randomly download one more application per
category that have not been included in our proof-of-concept implementation. The same reverse-
engineering method [27] is used to obtain the UI screenshots of this newly downloaded application.
We generate the corresponding UI wireframes for the collected UI screenshots as described in
Section 3.1. We select two UI wireframes per application and obtain 50 UI wireframes as the query
UI design in this study. The selected UI wireframes contain variant types and numbers of visual
components, according to our observation.

5.4.2 Human Evaluation of UI Design Relevance. We recruited five participants, P1, P2, P3, P4
and P5, from our school as human annotators. They have been working on Android app devel-
opment for at least two years. For each query UI, we obtain the top-10 search results (i.e., 20 UI
designs in total) by our method and the GUIFetch baseline, respectively. To avoid expectancy bias,
these 20 UI designs are randomly mixed together so that the human annotators have no knowl-
edge about which UI design is returned by which method and the ranking of that UI design in the
search results. The two annotators examine the UI design search results independently. For each
query UI wireframe, they classify each of the 20 UI designs as relevant or irrelevant to the query
UI. The annotators are given the original UI screenshot of the query UI wireframe as a reference
for comparison.

5.4.3 Evaluation Metrics. We use two statistical methods to measure the inter-rater agreement
between two human annotators and among all five human annotators. For the first metric, we
compute Cohen’s kappa statistics [33], which is suitable for measuring the agreement between
two raters accessing multiple items into two categories. For the second metric, we compute Fleiss’s
kappa statistics [38], which is used to evaluate the agreement between multiple raters. Based on
the five annotators’ judgment of UI design relevance, we regard a returned UI design as relevant by
three strategies: strict (both annotators label it as relevant) moderate (the majority of annotators
label it as relevant) and relaxed (at least one annotator labels it as relevant). We then compute
Precision@k (k = 1, 5, 10) and MRR. We do not use Recall and Mean Average Precision (MAP) in
this study, because it is impossible to manually annotate all relevant UI designs for a query UI in
a large UI-design database (54,987 UI screenshots in our proof-of-concept implementation).

5.5 RQ4: User Study of the Recommendations from Our Tool in Terms

of Usefulness and Diversity

To answer RQ4 and evaluate the usefulness of our search engine, we conduct a user study. We
choose five UI design tasks from Daily UI design challenge,6 recruit 18 students to design these
tasks, search relative UIs and modify their draft using our tool and then rate the usefulness and

6https://www.dailyui.co/.
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diversity of the recommendations. In the following, we introduce the details of these five tasks,
the experiment procedure and the metrics used in this RQ.

5.5.1 UI Design Tasks. We select five UI design tasks from Daily UI design challenge6: sign-up,
image gallery, login, preference setting, and navigation drawer. These five UIs cover essential fea-
tures of Android mobile applications: sign-up and image gallery are typical UIs for collecting user
inputs and displaying information content, respectively. login is a common feature for user authen-
tication, and preference setting is commonly used for software customization. navigation drawer is
a core interaction feature to provide users the access to all app functionalities. Furthermore, these
features are easy to understand even for non-professional UI designers who are the targeted users
in this study

5.5.2 Experiment Procedure. We recruit 18 students from our school through the school’s mail-
ing list. Although six students have some front-end software development experience, none of the
participants have Android UI design experience. In other word, they are inexperienced designers,
same as Lucy in Section 2. Participants are given the five UI design tasks and are asked to design a
UI wireframe for each task. Each task is allocated 15–30 minutes. Due to the time limitation, we do
not ask the participants to design high-fidelity visual effects of the UIs. To assist their design work,
the participants use our web tool to draw the UI wireframes and search our database of 54,987 An-
droid UI designs (see Section 4). The tool returns the top-10 UI designs for a query UI. We give
the participant a tutorial of tool usage and a 15-minute warm-up session to learn to use the tool.
For each task, the participants can search as many times as they wish. For the last search, they
are asked to select the UI designs in the search results that they consider relevant to the query UI
wireframe they draw. They are also asked to rate the overall diversity and usefulness of the search
results of the last search by 5-point Likert scale (1 being the lowest and 5 being the highest). In
detail, usefulness refers to how useful search results help participants understand/adjust design
options if they are facing real UI design tasks. For example, when participants are searching for
some UIs related building a sign-up page, the recommendations from our search engine fit into
their design requirements. Diversity refers to the diversity of the recommendation results, for ex-
ample, whether the recommended UIs involve variant component usage/layouts or color/size/font
effects that may be beyond their expectations.

5.5.3 Evaluation Metrics. We record the times of search by the participants for each task. Based
on the relevance judgment of UI design search results for the last search, we compute Precision@k
(k = 1, 5, 10) and MRR. We do not report Recall and MAP as it is impossible to annotate all relevant
UI designs in our database of 54,987 UI screenshots for a user-drawn UI wireframe.

6 EXPERIMENTAL RESULTS

6.1 RQ1 Results

6.1.1 Quantitative Results. Figure 11 shows the results of evaluating the three different repre-
sentation wireframes. Overall, the color-level model remains a slight advantage over grey-level
model in both component-scaling and component-removal treatments, with a 5–10% and 0.01–0.1
increase in Pre@1 and MRR, respectively. The reason may be that the color-level model mainly
focuses on the boundary of contained components in a wireframe instead of the exact pixel values,
and the color-level wireframe input includes three channels encoding more information while the
grey-level wireframes includes only one channel. In contrast, there are large margins between the
performances of the color-level model and of the texture-level model, especially in component-
removal treatments. This may be because the texture information is too complex and may confuse
the model after several max-pooling layers.
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Fig. 11. Results of three types of representation.

Fig. 12. Heatmaps for the grey-level, color-level and texture-level wireframe.

6.1.2 CNN Visualization. To better understand the impacts of different representations, we vi-
sualize these models using vanilla (i.e., standard) backpropagation saliency [25] in Figure 12. We
can find that the heatmap of the color-level model is the clearest, while that of the texture-level
model is the vaguest with much noise. The grey-level heatmap is vaguer than color-level one, be-
cause the differences between component and background is small in the grey one. In conclusion,
the color-level model performs the best and we choose it as the representation of our wireframe
dataset.

6.2 RQ2 Result

Our deep-learning-based approach for UI design search is the first technique of its kind. It is de-
signed to find relevant UI designs in face of the great variations in UI designs. In this RQ2, our
goal is to evaluate how well our approach achieves this design goal, and how well it compares
with image-similarity-based or component-matching-based UI design search. We use the color-
level wireframe dataset in this evaluation as the effectiveness of this kind of representation have
been proved in Section 6.1.

6.2.1 Runtime Performance. We run the experiments on a machine with Intel i7-7800X CPU, 64-
G RAM, and NVIDIA GeForce GTX 1080 Ti GPU. Take the inference time of the Scale10 experiment
as an example. Our W-AE (short for Wireframe Autoencoder), Rico, GUIFetch, SIFT and color-
histogram take 561.2 s, 771.4 s, 7446.9 s, 3944.6 s, and 523.6 s for 500 queries, respectively. In general,
W-AE is about 12 times and 6 times faster than the GUIFetch and SIFT baselines and is as fast as
the color-histogram and Rico baselines.
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Fig. 13. Results of nine automatic experiments.

6.2.2 Retrieval Performance. Figure 13 shows the performance metrics of the five methods in
the nine treated-UI-as-query experiments. The color-histogram baseline and the SIFT baseline
have close performance in all component-scaling experiments. At the component scaling ratio
10%, their performance metrics become lower than 0.2, and at the ratio 20% or higher, their perfor-
mance metrics become close to 0. For component removal experiments, the advanced SIFT feature
performs better than the simple color histogram feature. This is because the UIs treated by compo-
nent removal still have many intact components (see Figure 10(b)), which have the same keypoints
(and thus the same SIFT features) as their counterparts in the original UIs. This helps to retrieve
the original UIs for the component-removal-treated UIs. Nevertheless, at the component-removal
ratio 20% or higher, the performance metrics of the SIFT baseline become lower than 0.5.

In contrast, our W-AE is much more robust in face of large component-scaling and component-
removal variations, because our CNN model can extract more abstract, sophisticated UI-design
related image features through deep neural network, which are much less sensitive to image dif-
ferences than low-level image features like color histogram or SIFT. At the component scaling
ratio 20%, our W-AE still achieves 70.0% Precision@1 and 0.73 MRR. The performance of our W-
AE degrades (but is still much better than the four baselines) when the component-scaling ratio
is 25% or higher. This is because many small-size visual components (such as checkbox, switch or
small text) will become hardly visible even for human eyes (see Figure 10(a)). Similarly, the fea-
tures of such extremely small components will become invisible to the “eye” (i.e., convolutional
kernels) of the CNN model, and thus cannot contribute to the measurement of the UI-design sim-
ilarity. Although such extremely small UI components can test the limits of a search method in
extreme conditions, they would rarely exist in real-word UIs, because they are not user friendly.
At the component-removal ratio 20%, our W-AE still achieves 84.6% Precision@1 and 0.88 MRR.
The model performance degrades (again still much better than the baselines) at the component-
removal ratio 30%. However, as the example in Figure 10(b) shows, the treated UI with components
covering 30% less area than the original UI may become not-so-similar anymore to the original UI.
But we still consider the original UI as the ground truth for the treated UI in our automatic exper-
iments, which may result in the biased metrics for all the evaluated methods.

Our W-AE outperforms Rico on all metrics by large margins. The Rico baseline performs better
than other baselines but the performance gap between Rico and our W-AE model keeps growing
as the UI components and layout similarity decreases. Within the component-scaling experiments,
the Rico baseline is comparable to our W-AE at the scaling ratio 5–10%, but degrades quickly when
the ratio is 25% or higher. This is because Rico applies fully connected layers, which consider
every pixel in the UIs without filtering out meaningless and noisy ones, leading to sensitivity
to small input changes. In comparison, our W-AE performs convolution and pooling strategies to
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extract the core features from UIs, which is much more stable. A similar observation also applies to
experiments of removal treatment. The fully connected neural network baseline achieves relatively
good performance at the ratio 10% and then drops to 70.6% Precision@1 and 0.77 MRR at the ratio
20% and 47.6% Precision@1 and 0.57 MRR at the ratio 30%.

Among all component-scaling experiments, the GUIFetch baseline achieves comparable per-
formance as our W-AE only at the scaling ratio 5%. However, the performance of the GUIFetch
baseline drops significantly when the component-scaling ratio increases, and becomes close to 0
at the scaling ratio 20% or higher. This is because of the sensitivity of the GUIFetch’s component-
learning rules (see Section 5.3.2). When the component-scaling ratio is large, the position and size
of the corresponding components in the treated UI and the original UI will no longer be close
enough under the threshold, and thus will not be matched. For all component-removal experi-
ments, the GUIFetch baseline “unsurprisingly” achieves the perfect performance (all metrics being
1.0). This perfect performance is because all components left in a treated UI are intact and thus
can match their counterpart components in the original UI. Furthermore, the GUIFetch’s similarity
metric considers only the matched versus unmatched components in the query UI. As such, the
treated UI and the original UI end up with the similarity score 1.0. However, our generalization
study shows that the component-matching heuristics and the similarity metric of GUIFetch do not
work well in reality for finding relevant UI designs for real-world query UIs as judged by human.

6.2.3 Retrieval Failure Analysis. To gain deeper insight into our CNN model’s capability of en-
coding the visual semantics of UI designs, we manually examine the retrieval-failure cases in which
the ground-truth (GT) UI is ranked after other non-ground-truth (NGT) UIs, and identify three
main causes for retrieval failures in our automatic experiments. Figure 14 shows the typical exam-
ples for these three types of retrieval failures.

First, the query UI contains several well-aligned, close-by, same-type components, but the model
returns some UIs that have some same-type but bigger and less number of components in the corre-
sponding UI region (Figure 14(a)). This reveals the limitation of our model in distinguishing several
well-aligned, close-by, same-type components from one another. However, certain level of model-
ing fuzziness is important for retrieving similar UI designs with variant numbers of components
(such as Figure 2(g) versus Figure 2(h), (i), and (j) and the Image Gallery example in Figure 16). It
is important to note that we use pairs of the original and treated UIs as relevant UI designs in our
automatic experiments, and consider all other UIs in the database as “irrelevant” for a query UI.
However, as the example in Figure 14(a) shows, the non-ground-truth UIs can still relevant to the
query UIs. Such UI design relevance can only be judged by human, as we do in the generalization
experiment and user study.

Second, the query UI contains a UI component (usually an ImageView) covering a large area of
the UI, and the model returns some UIs that are similar to the query UI only by that large compo-
nent, but not similar in other parts of the UI designs (Figure 14(b)). Such retrieval results indicate
that our model does not treat the features from small or large visual components equivalently.
This inequivalent treatment is reasonable as large components are visually more evident, but it
may result in the similarity of large components overshadowing that of small components.

Third, the query UI contains some foreground UI components overlapping a large background
component, but the returned UIs contain only the background component without the foreground
components, especially when the foreground and background components are of the same type.
Overlapping components, especially the same-type ones, can be visually indistinguishable in UI
wireframes, because they lack high-fidelity visual effects (e.g., distinct colors or images) to tell
them apart. They pose a threat to our wireframe-based UI design search. However, according to
our observation, most of UI designs with overlapping components have a background image on

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 3, Article 19. Pub. date: June 2020.



19:22 J. Chen et al.

Fig. 14. Examples of non-ground-truth (NGT) UI ranked before ground-truth (GT) UI.

top of which real-functional UI components are laid. By removing such background images when
generating the UI wireframes, this threat could be mitigated.

In the face of component-scaling and component-removal variations in UI designs, our CNN-based

method that models the visual semantics of the whole UI designs significantly outperforms the image-

similarity-based and the component-matching-based methods. But the performance of our method

could be further enhanced by the capability of modeling well-aligned, close-by components, small-

size components, and overlapping components.

6.3 RQ3 Results: Generalization Evaluation

Based on the performance results of the three baseline methods in our automatic evaluation in
Section 6.2, we use the GUIFetch baseline in this study. We do not use the color-histogram and
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Table 1. Pairwise Comparisons of

Inter-rater Agreements

P1 P2 P3 P4 P5

P1 — 0.43 0.37 0.45 0.48
P2 0.43 — 0.38 0.51 0.49
P3 0.37 0.38 — 0.43 0.42
P4 0.45 0.51 0.43 — 0.56
P5 0.48 0.49 0.42 0.56 —

Table 2. Results of Human Relevance Evaluation

Relaxed Moderate Strict

W-AE GUIFetch W-AE GUIFetch W-AE GUIFetch

Pre@1 0.84 0.64 0.5 0.32 0.14 0.16

Pre@5 0.77 0.65 0.47 0.34 0.20 0.13
Pre@10 0.75 0.62 0.43 0.31 0.15 0.12
MRR 0.90 0.78 0.62 0.48 0.27 0.24

SIFT baselines for two reasons. First, our automatic evaluation shows that the color-histogram
and SIFT baselines have very poor performance even in face of artificial design variations. Second,
human evaluation of the relevance of UI design search results is labor intensive and considering
two more baselines will double the manual evaluation effort.

6.3.1 Results. All participants spent about 120 minutes to rate the relevance of the 1,000 UI de-
signs to their corresponding query UI wireframes. Table 1 shows the Cohen’s kappa results of the
pairwise comparisons among all five participants. For these comparisons, most of the kappa statis-
tics fall in the range of 0.42–0.56, which indicates a moderate to substantial agreement. We further
conducted the Fleiss’s kappa [38] to evaluate the agreement among all raters. The Fleiss’s kappa
for the 2,500 (500 × 5) annotations of UI design search results by our method and the GUIFetch
baseline are 0.41 and 0.51, respectively. We consider this level of agreement as acceptable, because
it can be rather subjective for determining the relevance of UI designs, depending on different
background, experience, education and even culture of the human annotators.

According to our observations and interviews, there are four aspects these annotators that are
most concerned with, including the semantic meaning of the UI (i.e., functionality), the layout,
the types of components, and the number of components. Some participants focus more on some
aspects while others are more concerned with other parts. Some participants are rather strict while
others are relatively relaxed. Different from manual-labelling tasks like image classification, there
is no hard right or wrong answer for checking each recommendation result. Therefore, the Cohen’s
and Fleiss’s kappa rates are not so high. However, in summary, the overall feedback quantitative
results from all participants still reflect that our method is much better than the baseline as we
discuss later.

Table 2 shows the performance metrics of our method and the GUIFetch baseline. Our W-AE
significantly outperforms the GUIFetch baseline in relaxed and moderate strategies by a large
margin, and maintains an advantage over GUIFetch in the strict strategy. By the relaxed strategy,
our W-AE has comparable performance as its performance in the scaling-10% and removal-20%
experiments (see Figure 13). In the moderate strategy, our W-AE still achieves precision@1 = 0.5
and MRR = 0.62. By the strict strategy, our W-AE remains a small advantage over GUIFetch. Since
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Fig. 15. Boxplot for diversity and usefulness ratings by participants.

this study involves many variations, it is hard to reach an agreement for five participants. The
GUIFetch baseline in reality no longer has the perfect performance as it does in the component-
removal experiments. Its performance is also much worse than that of some scaling experiments
where the GUIFetch performs well.

Our CNN-based method can robustly retrieve relevant UI designs for a set of diverse, unseen real-

application query UIs. In contrast, individual component-matching-based heuristics find much fewer

relevant UI designs for these real-application query UIs.

6.4 RQ4 Results: Usefulness Evaluation

Finally, to answer RQ4 and evaluate the usefulness of our UI design search engine in real-world
UI design tasks, where the users design and draw the UI wireframes on the fly during which they
use our UI design search engine to search relevant UI designs.

6.4.1 Results. The 18 participants perform in total 168 times of search in the five UI design
tasks. Among the 90 participant-task sessions, 59 has one search, 12 has two searches, and 20 has
three or more searches. The times of search is reasonable considering the short experiment time
for each task, as well as the time for drawing UI wireframes. According to the participants’ rel-
evance judgment of search results, our W-AE achieves precision@1 = 0.44, precision@5 = 0.40,
precision@10 = 0.38, and MRR = 0.59. These performance metrics fall in between those for the
strict and relaxed strategies in our generation study, which demonstrates the practicality our
search engine in support of real-world UI design tasks.

Figure 15 shows the boxplot of diversity and usefulness ratings of the search results by the 18
participants. For both these two aspects, the results from our model earn the scores of a median of
4 and the majority of them have a score falling in the range of 3 to 5, which indicates that our UI
design search engine is satisfying. Besides,among all 90 searches they rate, the participants rate the
search results’ diversity at 4 or 5 for 57 (63.3%) searches, and rate the search results’ usefulness at 4
or 5 for 51 (56.7%) searches. The motivating scenario illustrated in Section 2 is actually derived from
the design work by one participant in our user study. We can observe the diversity and usefulness
of the search results for inspiring that participant’s design of sign-up UI. Figure 16 shows two more
examples of the search results for the design of navigation drawer and image gallery, respectively.
For the two user-drawn UI wireframes, our tool returns many relevant UI designs as annotated by
the users (highlighted in blue check). Furthermore, the users give 4 or 5 ratings for the diversity
and usefulness of the search results, and provide some positive feebacks and useful suggestions on
the search results. Even for the irrelevant UI design (e.g., the fourth UI for the query navigation
drawer wireframe), our model’s recommendation stills makes some sense as that UI is visually
similar to the query wireframe. For the image gallery search results, in addition to the top-3 UI
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Fig. 16. Examples of the search results in our user study (check marks indicate that users consider a design

relevant).

designs that have almost the same UI layout as the query UI wireframe, the other returned UI
designs demonstrates diverse UI layouts for designing image gallery.

Our search engine does not produce satisfactory search results for 17 searches according to the
participants’ 1 or 2 diversity and usefulness ratings. By interviewing the participants, we identify
two main reasons for unsatisfactory search results. First, our model tends to return the UI designs
that are overall similar to the query UIs. Although this improves the diversity of the search results,
which is beneficial for gaining design inspirations, it cannot guarantee the presence of some par-
ticular UI components or a particular component layout in the returned UI designs that the users
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want (see the feedback on the search results for image gallery in Figure 16). To solve this problem,
we may consider more advanced model such as variational autoencoder [36], which can force a
greater loss when some user-desired components or component layouts in the query UI do not
appear in the search results.

Second, some participants complain that our model are sometimes strict to the location of the
components in a UI. For example, when the user draws the switch buttons in the middle region of a
preference setting UI, our tool does not return relevant UI designs. But when he moves the switch
button to the right side of the UI, our tool can return many relevant preference setting UIs. This
example actually shows that our model learns very well the characteristics of preference setting
UIs in which switch buttons usually appear on the right side of the UI. Although this modeling
capability is desirable to filter out irrelevant UIs, it may make the search of relevant UIs too strict
to a particular component layout. To relax the search results, we may use structure similarity of
images [17] or attribute graph [65] that support more abstract encoding of the component layout
in UIs, and thus more flexible UI design search.

7 THREATS TO VALIDITY

We discuss two types of threats of validity in our work, namely, internal validity and external
validity.

7.1 Internal Validity

Internal validity refers to the threat that may impact the results to causality [72]. First, our au-
tomatic evaluation allows us to conduct large-scale experiments to understand our approach’s
strengths and weaknesses, but it considers only component-scaling and component-removal vari-
ations separately. Real-world UI design variations would be much more complex. However, to
dive into the influence that each treatment brings, we need to control the variable and it is also not
feasible to try every combination of these two treatments. To alleviate this influence, we further
conduct generalization experiments and a user study to evaluate our tool by human participants.
The performance of our approach in these studies aligns well with that of our automatic eval-
uation, which gives us confidence in the practicality of our approach for real-world UI design
search.

Second, to confirm the generalization of our model, we recruited five students with over two
years of experience in Android development to manually examine the results from our model and
baselines. However, the notion of the concept of relevance may vary among them and thus impact
the results. Some of them may put more emphasis on the semantic meaning of the UI, while some
may consider a UI comprised of similar components as relevant. They both make sense, since
designers may directly reuse the design from the same scenario, but also get inspirations from UIs
with similar layout and similar constructions. To keep the evaluation consistent among different
participants, we gave them a tutorial to learn the general meaning of these concepts, and a 15-
minute warm-up time to get familiar with the tool and the experimental process. Besides, the
Cohen’s kappa values and the Fleiss’s kappa value indicate a moderate agreement between these
participants. It is reasonable, since the variations we stated above. We involved five students to
try and avoid potential bias as best we can and analyse the results in terms of three strategies,
namely strict, moderate and relaxed strategies, as states in Section 5.4.3. We assert that by involving
five participants and analysing results in terms of these three strategies, this threat to validity is
reasonably mitigated. Albeit participants’ variance, the overall results still show that our approach
outperforms other baselines by aggregating their feedback.
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7.2 External Validity

External validity refers to the threat that may limit the ability to generalize [72]. First, our data
collection tool could collect the majority UI elements from application, but could not capture the
detailed HTML elements in the WebView component and some elements in UIs that require some
specific engines, such unity3d game engines. Therefore, such limitation may make us lose the UI
designs from web components and game UIs. However, the GUI design in these UI that contain
HTML elements should be like those UIs that use the native elements. The different implemen-
tation is merely an alternative to construct the user interface, while the underlying design prin-
ciples should be the same. We collect a database of 54,987 UI screenshots from 25 categories of
7,746 top-downloaded Android applications and we believe such large-scale database could cover
the majority of UI designs. We let the extension of our tool to collecting UI elements in WebView
components and in specific engine as the future work. Second, our approach is general, but our
current tool supports only Android UI design search. To further validate the generalizability of our
approach, not only should the current tool be further enriched with more UI designs from further
Android applications, but it should also be extended to other applications (e.g., iOS, web appli-
cation). Currently, we have already tested our model/tool on 25 categories of Android apps that
demonstrates the generalization of our tool to some extent. As the composition of a user interface
is similar in terms of these platforms, we believe that our approach can also be applied with some
customization. But this will need to be further explored in the future.

8 RELATED WORK

UI design datasets. Many UI design kits [2, 3, 8, 9] are publicly available on the Web. Designers
also share their UI designs on social media platforms such as Dribbble [6] and UI Movement [11].
They are a great source for design inspirations, but they cannot expose developers to a large UI de-
sign space of real applications. Furthermore, these platforms support only simple keyword-based
search. Alternatively, existing applications provide a large repository of UI designs. To harness
these UI designs, people resort to automatic GUI exploration methods to simulate the user interac-
tion with GUI and collect UI screenshots of existing applications, which can support data-driven
applications such as UI code generation [27, 57, 61], GUI search [19, 22, 26, 67], design mining [51],
design linting [77], UI accessibility [30], user interaction modeling [31, 35], and privacy and se-
curity [32]. In the same vein, our work builds a large database of real-application UI designs by
automatic GUI exploration. Different from existing work, we further wirify UI screenshots to sup-
port wireframe-based UI design search.

UI design search. Our method allows users to search UI designs by UI wireframe images. Some
techniques [22, 51, 67] also support UI search by images, but they use low-level image features such
as color histogram together with other UI information (if available) such as component type, text
displayed. Other techniques [19, 66, 78] support GUI search by UI sketches. But they essentially
convert both query UI and UIs in the database into a tree of GUI components and then find similar
GUIs by computing the optimal matching of component trees. Different from these works, our ap-
proach truly models UIs as images and uses deep-learning features to encode the visual semantics
of UIs. The most related work is Rico [35], which envisions the possibility of deep-learning-based
UI search and demonstrates several examples based on simple fully connected layers model with
highly simplified data. Compared with their work, we develop a sophisticated model suitable for
the variety of real-life UI designs, implement a working prototype and conduct systematic empir-
ical studies.

UI implementation automation. Nguyen and Csallner [61] detect components in UI screen-
shots by rule-based image processing method and generate GUI code. They support only a small set
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of most commonly used GUI components. More powerful deep-learning-based methods [20, 27, 57]
have been recently proposed to leverage the big data of automatically collected UI screenshots and
corresponding code. Different from these UI code generation methods that require high-fidelity
UI design image, our approach requires only UI wireframes that can be fast prototyped even for
inexperienced developers. Furthermore, our method returns a set of diverse UI designs for explor-
ing the design space, rather than the code implementing a specific UI design. Some recent works
explore issues between UI designs and their implementations. Moran et al. [58] check if the im-
plemented GUI violates the original UI design by comparing the images similarity with computer
vision techniques. A follow-up work by them [59] further detects and summarizes GUI changes
in evolving mobile apps. UI design search finds similar UI designs, and then these techniques may
be applied to further detect the differences between similar UI designs that may help refine the
search results.

9 CONCLUSION

This article presents a novel deep-learning-based approach for UI design search. At the core of our
approach is a UI wireframe image autoencoder. Adopting image autoencoder architecture removes
the barrier, i.e., labeled relevant UI designs that is impossible to prepare at large scale, for train-
ing UI design encoder. Trained using a large database of unlabeled UI wireframes automatically
collected from existing applications, our wireframe encoder learns to encode more abstract and
richer visual semantics of the whole UI designs than keywords, low-level image features and com-
ponent type/position/size matching heuristics, leading to superior performance than the search
methods based on these types of primitive information. Our approach demonstrates the promis-
ing usefulness in supporting developers to explore and learn about a large UI design space. As the
first technique of its kind, our empirical studies also reveal technical and user needs for developing
more robust and more usable UI design search methods.
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